1. 难度:简单 | |
如图所示,将两个质量、球心相距的球水平放在无需考虑地球自转影响的北极点,它们之间的万有引力为地球对小球引力在两球连线方向的分力为已知地球的平均密度约为 ,则的数量级约为 A. B. C. D.
|
2. 难度:中等 | |
设宇宙中某一小行星自转较快,但仍可近似看作质量分布均匀的球体,半径为R.宇航员用弹簧测力计称量一个相对自己静止的小物体的重量,第一次在极点处,弹簧测力计的读数为F1=F0;第二次在赤道处,弹簧测力计的读数为F2= .假设第三次在赤道平面内深度为的隧道底部,示数为F3;第四次在距行星表面高度为R处绕行星做匀速圆周运动的人造卫星中,示数为F4.已知均匀球壳对壳内物体的引力为零,则以下判断正确的是( ) A.F3= ,F4= B.F3= ,F4=0 C.F3= ,F4=0 D.F3= ,F4=
|
3. 难度:中等 | |
某星球的质量约为地球质量的9倍,半径约为地球半径的一半,若从地球表面高h处平抛一物体,水平射程为60m,则在该星球上,从同样高度以同样的初速度平抛同一物体,其水平射程应为( ) A.10m B.40m C.90m D.360m
|
4. 难度:中等 | |
如图所示,地球绕太阳的运动与月亮绕地球的运动可简化成同一平面内的匀速圆周运动,农历初一前后太阳与月亮对地球的合力约为F1,农历十五前后太阳与月亮对地球的合力约为F2,则农历初八前后太阳与月亮对地球的合力表达式正确的是( ) A. B. C. D.
|
5. 难度:困难 | |
脉冲星的本质是中子星,具有在地面实验室无法实现的极端物理性质,是理想的天体物理实验室,对其进行研究,有希望得到许多重大物理学问题的答案。譬如:脉冲星的自转周期极棒稳定,准确的时钟信号为强力波探测。航天器导航等重大科学及技术应用提供了理想工具。2017年8月我国FAST天文望远镜首次发现两颗太空脉冲星,其中一颗的自转周期为T(实际测量为1.83s,距离地球1.6万光年),假设该星球恰好能维持自转而不瓦解;地球可视为球体,其自转周期为T0,同一物体在地球赤道上用弹簧秤测得的重力为两极处的0.9倍,已知万有引力常量为G,则该脉冲星的平均密度及其与地球的平均密度之比正确的是( ) A. B. C. D.
|
6. 难度:困难 | |
已知质量分布均匀的球壳对其内部物体的引力为零.设想在地球赤道正上方高h处和正下方深为h处各修建一绕地心的环形真空轨道,轨道面与赤道面共面.两物体分别在上述两轨道中做匀速圆周运动,轨道对它们均无作用力,设地球半径为R,则 A.两物体的线速度大小之比为 B.两物体的线速度大小之比为 C.两物体的加速度大小之比为 D.两物体的加速度大小之比为
|
7. 难度:中等 | |
设地球质量为M、半径为R、自转角速度为ω0,引力常量为G,且地球可视为质量分布均匀的球体.同一物体在赤道和南极水平面上静止时所受到的支持力大小之比为( ) A. B. C. D.
|
8. 难度:中等 | |
一物体静置在平均密度为的球形天体表面的赤道上.已知万有引力常量为G,若由于天体自转使物体对天体表面压力恰好为零,则天体自转周期为 A. B. C. D.
|
9. 难度:中等 | |
因“光纤之父”高锟的杰出贡献,早在1996年中国科学院紫金山天文台就将一颗于1981年12月3日发现的国际编号为“3463”的小行星命名为“高锟星”。假设高锟星为均匀的球体,其质量为地球质量的倍,半径为地球半径的倍,则“高锟星”表面的重力加速度是地球表面的重力加速度的( ) A.倍 B.倍 C.倍 D.倍
|
10. 难度:中等 | |
一探测器探测某星球表面时做了两次测量.探测器先在近星轨道上做圆周运动测出运行周期T;着陆后,探测器将一小球以不同的速度竖直向上抛出,测出了小球上升的最大高度h与抛出速度v的二次方的关系,如图所示,图中a、b已知,引力常量为G,忽略空气阻力的影响,根据以上信息可求得( ) A.该星球表面的重力加速度为2b/a B.该星球的半径为 C.该星球的密度为 D.该星球的第一宇宙速度为
|
11. 难度:中等 | |
某同学为探月宇航员设计了如下实验:在月球表面以初速度水平抛出一个物体,测出该物体的竖直位移为h,水平位移为x。通过查阅资料知道月球的半径为R,引力常量为G。根据上述信息可求出的物理量是( ) A.月球的第一宇宙速度 B.物体与月球之间的引力 C.月球表面的重力加速度 D.月球和物体的质量
|
12. 难度:中等 | |
2013年12月2日,我国成功发射了“嫦娥三号”月球探测器.设想未来我国宇航员随“嫦娥”号探测器贴近月球表面做匀速圆周运动,宇航员测出飞船绕行n圈所用的时间为t.登月后,宇航员利用身边的弹簧测力计测出质量为m的物体重力为F,已知引力常量为G.根据以上信息可求出 A.月球表面的重力加速度 B.月球的密度 C.月球的自转周期 D.飞船的质量
|
13. 难度:中等 | |
假设地球可视为质量均匀分布的球体,已知地球表面的重力加速度在两极的大小为g0,在赤道的大小为g,地球自转的周期为T,引力常数为G,求地球的密度?
|
14. 难度:中等 | |
宇航员站在某质量分布均匀的星球表面一斜坡上P点,沿水平方向以初速度v0抛出一个小球,测得小球经时间t落到斜坡另一点Q上,斜坡的倾角α,已知该星球的半径为R,引力常量为G,求该星球的密度(已知球的体积公式是V=πR3).
|
15. 难度:简单 | |
宇航员在地球表面以一定初速度竖直向上抛出一小球,经过时间t小球落回原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t小球落回原处.(取地球表面重力加速度g=10m/s2,空气阻力不计) (1)求该星球表面附近的重力加速度g'; (2)已知该星球的半径与地球半径之比为R星∶R地=1∶4,求该星球的质量与地球质量之比M星∶M地.
|
16. 难度:中等 | |
某星球半径为,假设该星球表面上有一倾角为的固定斜面体,一质量为的小物块在力作用下从静止开始沿斜面向上运动,力始终与斜面平行,如图甲所示.已知小物块和斜面间的动摩擦因数,力随位移变化的规律如图乙所示(取沿斜面向上为正方向).已知小物块运动时速度恰好为零,万有引力常量,求(计算结果均保留一位有效数字) (1)该星球表面上的重力加速度的大小; (2)该星球的平均密度.
|
17. 难度:简单 | |
载人飞船的舱内有一体重计,体重计上放一物体,火箭点火前,宇航员观察到体重计的示数为F0.在载人飞船随火箭竖直向上匀加速度升空的过程中,当飞船离地面高为H时宇航员观察到体重计的示数为F,已知地球半径为R,第一宇宙速度为v,万有引力常量为G,忽略地球自转的影响.试求: (1)物体质量m0; (2)地球的质量M; (3)火箭上升的加速度大小a.
|