1. 难度:中等 | |
的相反数是 A. B. C. D.
|
2. 难度:中等 | |
截止到2011年4月9日0时,北京小客车指标申请累计收到个人申请491671个,第四轮摇号中签率接近28比1. 将491671用科学记数法表示应为 A. B. C. D.
|
3. 难度:中等 | |
如图,△ABC中,D、E分别为AC、BC边上的点,AB∥DE,若AD=5,CD =3,DE =4,则AB的长为 A. B. C. D.
|
4. 难度:中等 | |
某校对1200名女生的身高进行了测量,身高在1.58~1.63(单位:m)这一小组的频率为0.25,则该组的人数为 A.150人 B.300人 C.600人 D.900人
|
5. 难度:中等 | |
布袋中有红、黄、蓝三个球,它们除颜色不同以外,其他都相同,从袋中随机取出一个球后再放回袋中,这样取出球的顺序依次是“红—黄—蓝”的概率是 A. B. C. D.
|
6. 难度:中等 | |
下列图形中,阴影部分面积为1的是
|
7. 难度:中等 | |
如图3,四边形OABC为菱形,点A、B在以点O为圆心的弧DE上,若OA=3,∠1=∠2,则扇形ODE的面积为 A. B. 2 C. D. 3
|
8. 难度:中等 | |
如图,已知点F的坐标为(3,0),点A、B分别是某函数图像与x轴、y轴的交点,点P 是此图像上的一动点,设点P的横坐标为x,PF的长为d,且d与x之间满足关系:d=5-x(0≤x≤5),则结论:① AF= 2 ② BF=4 ③ OA=5 ④ OB=3,正确结论的序号是
A.①②③ B ①③ C.①②④ D.③④
|
9. 难度:中等 | |
函数中,自变量的取值范围是 .
|
10. 难度:中等 | |
分解因式: = .
|
11. 难度:中等 | |
如图,AB是⊙O的直径,C、D、E都是⊙O上的点,则∠ACE+∠BDE=
|
12. 难度:中等 | |
将一个面积为1的等边三角形挖去连接三边中点所组成的三角形(如第①图)后,继续挖去连接剩余各个三角形三边中点所成的三角形(如第②图、第③图)…如此进行挖下去,第④个图中,剩余图形的面积为 ,那么第n(n为正整数)个图中,挖去的所有三角形形的面积和为 (用含n的代数式表示).
|
13. 难度:中等 | |
计算:.
|
14. 难度:中等 | |
解不等式组
|
15. 难度:中等 | |
已知,在△ABC中,DE∥AB,FG∥AC,BE=GC.求证:DE=FB.
|
16. 难度:中等 | |
已知直线与双曲线相交于点A(2,4),且与x轴、y轴分别交于B、C两点,AD垂直平分OB,垂足为D,求直线和双曲线的解析式。
|
17. 难度:中等 | |
列方程或方程组解应用题: 根据城市规划设计,某市工程队准备为该城市修建一条长4800米的公路. 铺设600 m后,为了尽量减少施工对城市交通造成的影响,该工程队增加人力,实际每天修建公路的长度是原计划的2倍,结果9天完成任务,该工程队原计划每天铺设公路多少米?
|
18. 难度:中等 | |
在平面直角坐标系中,点A的坐标是(0,6),点B在一次函数y=-x+m的图象上,且AB=OB=5.求一次函数的解析式.
|
19. 难度:中等 | |
已知:如图,在直角梯形ABCD中,AD∥BC,∠A=90°,∠C=45°,上底AD = 8,AB=12,CD边的垂直平分线交BC边于点G,且交AB的延长线于点E,求AE的长.
|
20. 难度:中等 | |
如图,在边长为1的正方形网格内,点A、B、C、D、E均在格点处.请你判断∠x+∠y的度数,并加以证明.
|
21. 难度:中等 | |
2010年5月20日上午10时起,2010年广州亚运会门票全面发售.下表为抄录广州亚运会官方网公布的三类比赛的部分门票价格,下图为某公司购买的门票种类、数量所绘制成的条形统计图. 依据上面的表和图,回答下列问题: (1)其中观看羽毛球比赛的门票有 张;观看田径比赛的门票占全部门票的 %. (2)公司决定采用随机抽取的方式把门票分配给部分员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地等完全相同且充分洗匀),问员工小丽抽到艺术体操门票的概率是 . (3)若该公司购买全部门票共花了36000元,试求每张田径门票的价格.
|
22. 难度:中等 | |
一块矩形纸片,利用割补的办法可以拼成一块与它面积相等的平行四边形(如图1所示): 请你根据图1作法的提示,利用图2画出一个平行四边形,使该平行四边形的面积等于所给的矩形面积. 要求:(1)画出的平行四边形有且只有一个顶点与B点重合; (2)写出画图步骤; (3)写出所画的平行四边形的名称.
|
23. 难度:中等 | |
在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2,E为BC的中点,以OE为直径的⊙O′交x轴于D点,过点D作DF⊥AE于F. (1) 求OA,OC的长; (2) 求证:DF为⊙O′的切线; (3)由已知可得,△AOE是等腰三角形.那么在直线BC上是否存在除点E以外的点P,使△AOP也是等腰三角形?如果存在,请你证明点P与⊙O′的位置关系,如果不存在,请说明理由.
|
24. 难度:中等 | |
已知:如图,在四边形ABCD中, AD=BC,∠A、∠B均为锐角. 当∠A=∠B时,则CD与A B的位置关系是CD AB,大小关系是CD AB; 当∠A>∠B时,(1)中C D与A B的大小关系是否还成立,证明你的结论.
|
25. 难度:中等 | |
如图,在平面直角坐标系中,点A的坐标为(1,) ,点B在x轴的负半轴上, ∠ABO=30°. (1)求过点A、O、B的抛物线的解析式; (2)在(1)中抛物线的对称轴上是否存在点C,使AC+OC的值最小?若存在,求出点C的坐标;若不存在,请说明理由; (3)在(1)中轴下方的抛物线上是否存在一点P,过点P作轴的垂线,交直线AB于点D,线段OD把△AOB分成两个三角形.使其中一个三角形面积与四边形BPOD面积比为2:3 ?若存在,求出点P的坐标;若不存在,请说明理由.
|