1. 难度:中等 | |
如图,⊙O内切于△ABC,切点为D,E,F.已知∠B=50°,∠C=60°,连结OE,OF,DE,DF,那么∠EDF等于( ) A.40° B.55° C.65° D.70°
|
2. 难度:中等 | |
如图,⊙O是△ABC的内切圆,D,E,F是切点,∠A=50°,∠C=60°,则∠DOE=( ) A.70° B.110° C.120° D.130°
|
3. 难度:中等 | |
如图,△ABC中,∠A=45°,I是内心,则∠BIC=( ) A.112.5° B.112° C.125° D.55°
|
4. 难度:中等 | |
下列命题正确的是( ) A.三角形的内心到三角形三个顶点的距离相等 B.三角形的内心不一定在三角形的内部 C.等边三角形的内心,外心重合 D.一个圆一定有唯一一个外切三角形
|
5. 难度:中等 | |
在Rt△ABC中,∠C=90°,AC=3,AB=5,则它的内切圆与外接圆半径分别为( ) A.1.5,2.5 B.2,5 C.1,2.5 D.2,2.5
|
6. 难度:中等 | |
如图,在△ABC中,AB=AC,内切圆O与边BC,AC,AB分别切于D,E,F. (1)求证:BF=CE; (2)若∠C=30°,CE=2,求AC的长.
|
7. 难度:中等 | |
如图,⊙I切△ABC的边分别为D,E,F,∠B=70°,∠C=60°,M是 上的动点(与D,E不重合),∠DMF的大小一定吗?若一定,求出∠DMF的大小;若不一定,请说明理由.
|
8. 难度:中等 | |
如图,△ABC中,∠A=m°. (1)如图(1),当O是△ABC的内心时,求∠BOC的度数; (2)如图(2),当O是△ABC的外心时,求∠BOC的度数; (3)如图(3),当O是高线BD与CE的交点时,求∠BOC的度数.
|
9. 难度:中等 | |
如图,在半径为R的圆内作一个内接正方形,然后作这个正方形的内切圆,又在这个内切圆中作内接正方形,依此作到第n个内切圆,它的半径是( ) A.()nR B.()nR C.()n-1R D.()n-1R
|
10. 难度:中等 | |
如图,⊙O为△ABC的内切圆,∠C=90°,AO的延长线交BC于点D,AC=4,DC=1,则⊙O的半径等于( ) A. B. C. D.
|
11. 难度:中等 | |
如图,已知正三角形ABC的边长为2a. (1)求它的内切圆与外接圆组成的圆环的面积; (2)根据计算结果,要求圆环的面积,只需测量哪一条弦的大小就可算出圆环的面积; (3)将条件中的“正三角形”改为“正方形”“正六边形”,你能得出怎样的结论? (4)已知正n边形的边长为2a,请写出它的内切圆与外接圆组成的圆环面积.
|
12. 难度:中等 | |
如图,已知△ABC的内切圆⊙O分别和边BC,AC,AB切于D,E,F,如果AF=2,BD=7,CE=4. (1)求△ABC的三边长; (2)如果P为上一点,过P作⊙O的切线,交AB于M,交BC于N,求△BMN的周长.
|
13. 难度:中等 | |
阅读材料:如图(1),△ABC的周长为L,内切圆O的半径为r,连结OA,OB,△ABC被划分为三个小三角形,用S△ABC表示△ABC的面积. ∵S△ABC =S△OAB +S△OBC +S△OCA 又∵S△OAB =AB·r,S△OBC =BC·r,S△OCA =AC·r ∴S△ABC =AB·r+BC·r+CA·r =L·r(可作为三角形内切圆半径公式) (1)理解与应用:利用公式计算边长分为5,12,13的三角形内切圆半径; (2)类比与推理:若四边形ABCD存在内切圆(与各边都相切的圆,如图(2)且面积为S,各边长分别为a,b,c,d,试推导四边形的内切圆半径公式; (3)拓展与延伸:若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1,a2,a3,…an,合理猜想其内切圆半径公式(不需说明理由).
|
14. 难度:中等 | |
如图,Rt△ABC中,AC=8, BC=6,∠C=90°,⊙I分别切AC,BC,AB于D,E,F,求Rt△ABC的内心I与外心O之间的距离.
|