1. 难度:中等 | |
(2006•徐州)在平面直角坐标系中,已知矩形ABCD中,边AB=2,边AD=1,且AB、AD分别在x轴、y轴的正半轴上,点A与坐标原点重合.将矩形折叠,使点A落在边DC上,设点A′是点A落在边DC上的对应点. (1)当矩形ABCD沿直线y=-x+b折叠时(如图1),求点A'的坐标和b的值; (2)当矩形ABCD沿直线y=kx+b折叠时, ①求点A′的坐标(用k表示);求出k和b之间的关系式; ②如果我们把折痕所在的直线与矩形的位置分为如图2、3、4所示的三种情形,请你分别写出每种情形时k的取值范围.(将答案直接填在每种情形下的横线上)k的取值范围是______;k的取值范围是______;k的取值范围是______. |
2. 难度:中等 | |
(2006•徐州)如图,在平面直角坐标系中,直线y=-2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C. (1)求点C的坐标; (2)求△OAC的面积; (3)若P为线段OA(不含O、A两点)上的一个动点,过点P作PD∥AB交直线OC于点D,连接PC.设OP=t,△PDC的面积为S,求S与t之间的函数关系式;S是否存在最大值?如果存在,请求出来;如果不存在,请简要说明理由. |
3. 难度:中等 | |||||||||||||||
(2006•湘西州)如图,直线OQ的函数解析式为y=x. 下表是直线a的函数关系中自变量x与函数y的部分对应值.
(1)根据表所提供的信息,请在直线OQ所在的平面直角坐标系中画出直线a的图象,并说明点(10,-10)不在直线a的图象上; (2)求点C的坐标; (3)设△OBC中位于直线l左侧部分的面积为S,写出S与m之间的函数关系式; (4)试问是否存在点P,使过点P且垂直于x轴的直线l平分△OBC的面积?若有,求出点P坐标;若无,请说明理由. |
4. 难度:中等 | |
(2006•武汉)(北师大版)如图1,在平面直角坐标系中,以坐标原点O为圆心的⊙O的半径为-1,直线a:y=-x-与坐标轴分别交于A,C两点,点B的坐标为(4,1),⊙B与X轴相切于点M. (1)求点A的坐标及∠CAO的度数; (2)⊙B以每秒1个单位长度的速度沿x轴负方向平移,同时,直线a绕点A顺时针匀速旋转.当⊙B第一次与⊙O相切时,直线a也恰好与⊙B第一次相切.问:直线AC绕点A每秒旋转多少度; (3)如图2,过A,O,C三点作⊙O1,点E是劣弧上一点,连接EC,EA.EO,当点E在劣弧上运动时(不与A,O两点重合),的值是否发生变化?如果不变,求其值;如果变化,说明理由 |
5. 难度:中等 | |
(2006•芜湖)如图,在平面直角坐标系中,以点M(0,)为圆心,以2长为半径作⊙M交x轴于A,B两点,交y轴于C,D两点,连接AM并延长交⊙M于P点,连接PC交x轴于E. (1)求出CP所在直线的解析式; (2)连接AC,请求△ACP的面积. |
6. 难度:中等 | |
(2006•天门)直线l的解析式为y=x+8,与x轴、y轴分别交于A,B两点,P是x轴上一点,以P为圆心的圆与直线l相切于B点. (1)求点P的坐标及⊙P的半径R; (2)若⊙P以每秒个单位沿x轴向左运动,同时⊙P的半径以每秒个单位变小,设⊙P的运动时间为t秒,且⊙P始终与直线l有交点,试求t的取值范围. |
7. 难度:中等 | |
(2006•太原)如图:已知直线y=kx+1经过点A(3,-2)、点B(a,2),交y轴于点M, (1)求a的值及AM的长; (2)在x轴的负半轴上确定点P,使得△AMP成等腰三角形,请你直接写出点P的坐标; (3)将直线AB绕点A逆时针旋转45°得到直线AC,点D(-3,b)在AC上,连接BD,设BE是△ABD的高,过点E的射线EF将△ABD的面积分成2:3两部分,交△ABD的另一边于点F,求点F的坐标. |
8. 难度:中等 | |
(2006•台州)如图,直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,直线DA交y轴于点E. (1)△OBC与△ABD全等吗?判断并证明你的结论; (2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由. |
9. 难度:中等 | |
(2006•三明)如图①、②、③是两个半径都等于2的⊙O1和⊙O2,由重合状态沿水平方向运动到互相外切过程中的三个位置,⊙O1和⊙O2相交于A、B两点,分别连接O1A、O1B、O2A、O2B和AB. (1)如图②,当∠AO1B=120°时,求两圆重叠部分图形的周长l; (2)设∠AO1B的度数为x,两圆重叠部分图形的周长为y,求y关于x的函数关系式,并写出自变量x的取值范围; (3)由(2),若y=2π,则线段O2A所在的直线与⊙O1有何位置关系,为什么?除此之外,它们还有其它的位置关系,写出其它位置关系时x的取值范围.(奖励提示:如果你还能解决下列问题,将酌情另加1~5分,并计入总分.) 在原题的条件下,设∠AO1B的度数为2n,可以发现有些图形的面积S也随∠AO1B变化而变化,试求出其中一个S与n的关系式,并写出n的取值范围. |
10. 难度:中等 | |
(2006•黔东南州)如图,在平面直角坐标系中,已知:△ABC的三个顶点的坐标分别是A(4,6)、B(0,0)、C(6,0). (1)求AO、AB所在直线的函数解析式; (2)在△AOB内可以作一个正方形CDEF,使它的三个顶点分别落在边AO、AB上,E、F两个顶点落在OB上,请求出这个正方形四个顶眯的坐标,并在图中画出这个正方形; (3)连接OC,在线段OC上任取一点P,过P作与x轴、y轴的不行线与OA、OB分别交于M、N两点,过M作OB边的垂线与OB交于H;你有什么发现?请写出来,并说明理由. |
11. 难度:中等 | |
(2006•南通)如图,在平面直角坐标系中,O为坐标原点,B(5,0),M为等腰梯形OBCD底边OB上一点,OD=BC=2,∠DMC=∠DOB=60度. (1)求点D,B所在直线的函数表达式; (2)求点M的坐标; (3)∠DMC绕点M顺时针旋转α(0°<α<30°后,得到∠D1MC1(点D1,C1依次与点D,C对应),射线MD1交边DC于点E,射线MC1交边CB于点F,设DE=m,BF=n.求m与n的函数关系式. |
12. 难度:中等 | |
(2006•梅州)如图,直线l的解析式为y=x+4,l与x轴,y轴分别交于点A,B. (1)求原点O到直线l的距离; (2)有一个半径为1的⊙C从坐标原点出发,以每秒1个单位长的速度沿y轴正方向运动,设运动时间为t(秒).当⊙C与直线l相切时,求t的值. |
13. 难度:中等 | |
(2006•旅顺口区)直线y=-x+1分别与x轴、y轴交于B、A两点. (1)求B、A两点的坐标; (2)把△AOB以直线AB为轴翻折,点O落在平面上的点C处,以BC为一边作等边△BCD,求D点的坐标. |
14. 难度:中等 | |
(2006•辽宁)如图,四边形OABC是一张放在平面直角坐标系中的正方形纸片.点O与坐标原点重合,点A在x轴上,点C在y轴上,OC=4,点E为BC的中点,点N的坐标为(3,0),过点N且平行于y轴的直线MN与EB交于点M.现将纸片折叠,使顶点C落在MN上,并与MN上的点G重合,折痕为EF,点F为折痕与y轴的交点. (1)求点G的坐标; (2)求折痕EF所在直线的解析式; (3)设点P为直线EF上的点,是否存在这样的点P,使得以P,F,G为顶点的三角形为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由. |
15. 难度:中等 | |
(2006•辽宁)如图,已知A(-1,0),E(0,-),以点A为圆心,以AO长为半径的圆交x轴于另一点B,过点B作BF∥AE交⊙A于点F,直线FE交x轴于点C. (1)求证:直线FC是⊙A的切线; (2)求点C的坐标及直线FC的解析式; (3)有一个半径与⊙A的半径相等,且圆心在x轴上运动的⊙P.若⊙P与直线FC相交于M,N两点,是否存在这样的点P,使△PMN是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由. |
16. 难度:中等 | |
(2006•凉山州)如图,直线y=-+8与x轴、y轴分别交于A、B两点,M为OB上一点,若将△ABM沿AM折叠,点B恰好落在x轴上的B′处,则直线AM的解析式为______. |
17. 难度:中等 | |
(2006•吉林)如图,正方形ABCD的边长为2cm,在对称中心O处有一钉子.动点P,Q同时从点A出发,点P沿A⇒B⇒C方向以每秒2cm的速度运动,到点C停止,点Q沿A⇒D方向以每秒1cm的速度运动,到点D停止.P,Q两点用一条可伸缩的细橡皮筋连接,设x秒后橡皮筋扫过的面积为ycm2. (1)当0≤x≤1时,求y与x之间的函数关系式; (2)当橡皮筋刚好触及钉子时,求x值; (3)当1≤x≤2时,求y与x之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时∠POQ的变化范围; (4)当0≤x≤2时,请在给出的直角坐标系中画出y与x之间的函数图象. |
18. 难度:中等 | |
(2006•吉林)如图,在边长为8厘米的正方形ABCD内,贴上一个边长为4厘米的正方形AEFG,正方形ABCD未被盖住的部分为多边形EBCDGF.动点P从点B出发,沿B⇒C⇒D方向以1厘米/秒速度运动,到点D停止,连接PA,PE.设点P运动x秒后,△APE与多边形EBCDGF重叠部分的面积为y厘米2. (1)当x=5时,求y的值; (2)当x=10时,求y的值; (3)求y与x之间的函数关系式; (4)在给出的直角坐标系中画出y与x之间的函数图象. |
19. 难度:中等 | |
(2006•黄石)已知一次函数y=kx+b(k>0,b>0)与反比例函数y=-的图象有唯一的公共点. (1)求出b关于k的表达式及b为最小正整数时的两个函数的解析式; (2)证明:k取任何正实数时,直线y=kx+b总经过一个定点,并求出定点的坐标. |
20. 难度:中等 | |
(2006•淮安)已知一次函数y=+m(O<m≤1)的图象为直线l,直线l绕原点O旋转180°后得直线l',△ABC三个顶点的坐标分别为A(-,-1)、B(,-1)、C(0,2). (1)直线AC的解析式为______ |
21. 难度:中等 | |
(2006•河南)如图,在平面直角坐标系中,直线y=-x+4分别交x轴、y轴于A、B两点. (1)求两点的坐标; (2)设是直线AB上一动点(点P与点A不重合),设⊙P始终和x轴相切,和直线AB相交于C、D两点(点C的横坐标小于点D的横坐标)设P点的横坐标为m,试用含有m的代数式表示点C的横坐标; (3)在(2)的条件下,若点C在线段AB上,求m为何值时,△BOC为等腰三角形? |
22. 难度:中等 | |
(2006•河池)如图,在平面直角坐标系中,直线y=-x+6交x轴于点A,交y轴于点B.点P,点Q同时从原点出发作匀速运动,点P沿x轴正方向运动,点Q沿OB→BA方向运动,并同时到达点A.点P运动的速度为1厘米/秒. (1)求点Q运动的速度; (2)当点Q运动到线段BA上时,设点P运动的时间为x(秒),△POQ的面积为y(平方厘米),那么用x的代数式表示AQ=______,并求y与x的函数关系式; (3)若将(2)中所得函数的自变量x的取值范围扩大到任意实数后,其函数图象上是否存在点M,使得点M与该函数图象和x轴的两个交点所组成的三角形面积等于△AOB的面积?若存在,求出点M的坐标;若不存在,请说明理由. |
23. 难度:中等 | |
(2006•杭州)已知,直线y=-x+1与x轴,y轴分别交于点A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90度.且点P(1,a)为坐标系中的一个动点. (1)求三角形ABC的面积S△ABC; (2)证明不论a取任何实数,三角形BOP的面积是一个常数; (3)要使得△ABC和△ABP的面积相等,求实数a的值. |
24. 难度:中等 | |
(2006•贵港)如图,已知直线l的函数表达式为y=-x+8,且l与x轴,y轴分别交于A,B两点,动点Q从B点开始在线段BA上以每秒2个单位长度的速度向点A移动,同时动点P从A点开始在线段AO上以每秒1个单位长度的速度向点O移动,设点Q,P移动的时间为t秒 (1)点A的坐标为______,点B的坐标为______; (2)当t=______时,△APQ与△AOB相似; (3)(2)中当△APQ与△AOB相似时,线段PQ所在直线的函数表达式为______. |
25. 难度:中等 | |
(2006•广州)如图⊙O的半径为1,过点A(2,0)的直线切⊙O于点B,交y轴于点C. (1)求线段AB的长; (2)求以直线AC为图象的一次函数的解析式. |
26. 难度:中等 | |
(2006•大连)早晨小欣与妈妈同时从家里出发,步行与骑自行车到方向相反的两地上学与上班,图是他们离家的路程y(米)与时间x(分)的函数图象.妈妈骑车走了10分时接到小欣的电话,即以原速骑车前往小欣学校,并与小欣同时到达学校.已知小欣步行速度为每分50米,求小欣家与学校距离及小欣早晨上学需要的时间. |
27. 难度:中等 | |
(2006•崇左)如图,在平面直角坐标系中,⊙M与x轴交于A,B两点,AC是⊙M的直径,过点C的直线交x轴于点D,连接BC,已知点M的坐标为,直线CD的函数解析式为y=-x+5. (1)求点D的坐标和BC的长; (2)求点C的坐标和⊙M的半径; (3)求证:CD是⊙M的切线. |
28. 难度:中等 | |
(2009•甘孜州)如图,已知反比例函数y1=(m≠0)的图象经过点A(-2,1),一次函数y2=kx+b(k≠0)的图象经过点C(0,3)与点A,且与反比例函数的图象相交于另一点B. (1)分别求出反比例函数与一次函数的解析式; (2)求点B的坐标. |
29. 难度:中等 | |
(2006•长春)如图,在平面直角坐标系中,两个函数y=x,y=-x+6的图象交于点A.动点P从点O开始沿OA方向以每秒1个单位的速度运动,作PQ∥x轴交直线BC于点Q,以PQ为一边向下作正方形PQMN,设它与△OAB重叠部分的面积为S. (1)求点A的坐标. (2)试求出点P在线段OA上运动时,S与运动时间t(秒)的关系式. (3)在(2)的条件下,S是否有最大值若有,求出t为何值时,S有最大值,并求出最大值;若没有,请说明理由. (4)若点P经过点A后继续按原方向、原速度运动,当正方形PQMN与△OAB重叠部分面积最大时,运动时间t满足的条件是______ |
30. 难度:中等 | |
(2006•北京)在平面直角坐标系xOy中,直线y=-x绕点O顺时针旋转90°得到直线l,直线l与反比例函数的图象的一个交点为A(a,3),试确定反比例函数的解析式. |