1. 难度:中等 | |
-5的相反数是( ) A.-5 B.- C.5 D. |
2. 难度:中等 | |
据统计,潼南县2012年报名参加9年级毕业考试的总人数为11377人,则11377用科学记数法表示为( ) A.1137.7×101 B.113.77×102 C.11.377×103 D.1.1377×104 |
3. 难度:中等 | |
下列计算正确的是( ) A.a2•a4=a8 B.(a-b)2=a2-b2 C. D. |
4. 难度:中等 | |
如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于( ) A.80° B.50° C.40° D.20° |
5. 难度:中等 | |
数据20,70,30,70,50,70的众数是( ) A.20 B.30 C.50 D.70 |
6. 难度:中等 | |
如图所示的几何体的俯视图是( ) A. B. C. D. |
7. 难度:中等 | |
如图,直线m∥n,∠1=55°,∠2=45°,则∠3的度数为( ) A.80° B.90° C.100° D.110° |
8. 难度:中等 | |
某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y(升)与时间x(分)之间的函数关系对应的图象大致为( ) A. B. C. D. |
9. 难度:中等 | |
我国古代的“河图”是由3×3的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.下图给出了“河图”的部分点图,请你推算出P处所对应的点图是( ) A. B. C. D. |
10. 难度:中等 | |
如图,△ABC中,∠ABC=45°,CD⊥AB,垂足为D,BE平分∠ABC,且BE⊥AC,垂足为E,与CD交于F,H是BC边的中点,F是CD边的中点,连接DH与BE交于点G,则下列结论: ①BF=AC;②CE=BF;③S四边形ADGE=S四边形GHCE;④CE=BG, 其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个 |
11. 难度:中等 | |
函数y=的自变量x取值范围是 . |
12. 难度:中等 | |
甲、乙两同学近期5次百米跑测试成绩的平均数相同,甲同学成绩的方差为2,乙同学成绩的方差为0.4,则甲、乙两同学测试成绩稳定的是 (填甲或乙). |
13. 难度:中等 | |
如图,等腰梯形ABCD中,AD∥BC,AB∥DE,BC=8,AB=6,AD=5,则△CDE的周长是 . |
14. 难度:中等 | |
若△ABC∽△DEF,并且面积的比为9:25,则它们的周长的比为 . |
15. 难度:中等 | |
小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为 . |
16. 难度:中等 | |
用甲乙两种饮料按照x:y(重量比)混合配制成一种新饮料,原来两种饮料成本是:甲每300克5元,乙每300克3元.现甲成本上升10%,乙下降10%,而新饮料成本恰好保持不变,则x:y= . |
17. 难度:中等 | |
. |
18. 难度:中等 | |
求不等式组的整数解. |
19. 难度:中等 | |
小张在课外活动时,发现一个烟囱在墙上的影子CD正好和自己一样高.他测得当时自己在平地上的影子长2.4米,烟囱到墙的距离是7.2米.如果小张的身高是1.6米,你能否据此算出烟囱的高度? |
20. 难度:中等 | |
已知:如图,在△ABC中,∠ACB=90°点D是AB的中点,延长BC到点F,延长CB到点E,使CF=BE,连接DE、DC、DF. 求证:DE=DF. |
21. 难度:中等 | |
先化简,再求值:,其中m为方程x2-x=0的解. |
22. 难度:中等 | |
如图,Rt△ABO的顶点A是双曲线y=与直线y=-x-(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=. (1)求这两个函数的解析式; (2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积. |
23. 难度:中等 | |
为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如右的调查问卷(单选).在随机调查了奉市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图: 根据以上信息解答下列问题: (1)补全条形统计图,并计算扇形统计图中m=______; (2)该市支持选项B的司机大约有多少人? (3)若要从该市支持选项B的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少? |
24. 难度:中等 | |
如图所示,在直角梯形ABCD中,∠BCD=90°,AD∥BC,CD=BC,E是CD上一点,BE⊥AC. (1)求证:AD=EC; (2)当点E在CD上什么位置时,AB=BE成立?并说明理由. |
25. 难度:中等 | |
潼南县的一家房地产开发公司在2011年底销售商品房时,市场销售部经分析发现,每套商品房的利润P(万元)与销售单价x(千元/m2)满足关系式P=2x+1,销售量y(套)与销售单价x(千元/m2)满足关系式y=-200x+b,且当销售单价定在4千元/m2时,可以销售800套. (1)当销售单价x定为多少时,该房地产公司获利最大,最大利润为多少万元? (2)2012年初,由于政府有关房地产的新政策出台,购房者持币观望,开发商预计当销售单价定位4千元/m2时,可销售800套,若销售单价每提高0.1千元/m2,销售量将减少30套,于是开发商采取了送初装费等促销手段以加大销售力度,并快速回笼奖金,这样一来,每套房屋利润将减少2万元,若开发公司想实现利润5650万元且尽量多地回笼资金(即销售总额更大),问销售单价应定为多少?(精确到0.1千元/m2)(参考数据:) |
26. 难度:中等 | |
如图,在△ABC中,AB=AC=5,BC=6,D、E分别是边AB、AC上的两个动点(D不与A、B重合),且保持DE∥BC,以DE为边,在点A的异侧作正方形DEFG. (1)试求△ABC的面积; (2)当边FG与BC重合时,求正方形DEFG的边长; (3)设AD=x,△ABC与正方形DEFG重叠部分的面积为y,试求y关于x的函数关系式,并写出定义域; (4)当△BDG是等腰三角形时,请直接写出AD的长. |