1. 难度:中等 | |
如图所示的几何体的俯视图是( ) A. B. C. D. |
2. 难度:中等 | |
下列计算中,正确的是( ) A. B. C. D. |
3. 难度:中等 | |
将代数式x2+4x-1化成(x+p)2+q的形式( ) A.(x-2)2+3 B.(x+2)2-4 C.(x+2)2-5 D.(x+2)2+4 |
4. 难度:中等 | |
小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图),若小亮上坡、平路、下坡的速度分别为v1,v2,v3,v1<v2<v3,则小亮同学骑车上学时,离家的路程s与所用时间t的函数关系图象可能是( ) A. B. C. D. |
5. 难度:中等 | |
如图,边长为4的等边△ABC中,DE为中位线,则四边形BCED的面积为( ) A. B. C. D. |
6. 难度:中等 | |
如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( ) A.m=n,k>h B.m=n,k<h C.m>n,k=h D.m<n,k=h |
7. 难度:中等 | |
在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是,则原来盒中有白色棋子( ) A.8颗 B.6颗 C.4颗 D.2颗 |
8. 难度:中等 | |
如图,某航天飞机在地球表面点P的正上方A处,从A处观测到地球上的最远点Q,若∠QAP=α,地球半径为R,则航天飞机距地球表面的最近距离AP,以及P、Q两点间的地面距离分别是( ) A. B. C. D. |
9. 难度:中等 | |
某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下: 对这两名运动员的成绩进行比较,下列四个结论中,不正确的是( ) A.甲运动员得分的极差大于乙运动员得分的极差 B.甲运动员得分的中位数大于乙运动员得分的中位数 C.甲运动员的得分平均数大于乙运动员的得分平均数 D.甲运动员的成绩比乙运动员的成绩稳定 |
10. 难度:中等 | |
如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是( ) A.3π B.6π C.5π D.4π |
11. 难度:中等 | |
在Rt△ABC中,∠C=90°,把∠A的邻边与对边的比叫做∠A的余切,记作cotA=.则下列关系式中不成立的是( ) A.tanA•cotA=1 B.sinA=tanA•cosA C.cosA=cotA•sinA D.tan2A+cot2A=1 |
12. 难度:中等 | |
如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于( ) A.2:5 B.14:25 C.16:25 D.4:21 |
13. 难度:中等 | |
如图,巳知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b的值为( ) A.3 B. C.4 D. |
14. 难度:中等 | |
如图,自行车的链条每节长为2.5cm,每两节链条相连接部分重叠的圆的直径为0.8cm,如果某种型号的自行车链条共有60节,则这根链条没有安装时的总长度为( ) A.150cm B.104.5cm C.102.8cm D.102cm |
15. 难度:中等 | |
根据图1所示的程序,得到了y与x的函数图象,如图2.若点M是y轴正半轴上任意一点,过点M作PQ∥x轴交图象于点P,Q,连接OP,OQ.则以下结论: ①x<0时, ②△OPQ的面积为定值. ③x>0时,y随x的增大而增大. ④MQ=2PM. ⑤∠POQ可以等于90°.其中正确结论是( ) A.①②④ B.②④⑤ C.③④⑤ D.②③⑤ |
16. 难度:中等 | |
已知A=2x,B是多项式,在计算B+A时,小马虎同学把B+A看成了B÷A,结果得x2+x,则B+A= . |
17. 难度:中等 | |||||||||||||||||||
甲、乙两人在5次体育测试中的成绩(成绩为整数,满分为100分)如下表,其中乙的第5次成绩的个位数被污损.
|
18. 难度:中等 | |
已知长方形ABCD,AB=3cm,AD=4cm,过对角线BD的中点O做BD垂直平分线EF,分别交AD、BC于点E、F,则AE的长为 . |
19. 难度:中等 | |||||||||||||||||
抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:
①抛物线与x轴的一个交点为(3,0); ②函数y=ax2+bx+c的最大值为6; ③抛物线的对称轴是直线; ④在对称轴左侧,y随x增大而增大. |
20. 难度:中等 | |
如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间 秒时,以点P,Q,E,D为顶点的四边形是平行四边形. |
21. 难度:中等 | |
已知a是锐角,且sin(a+15°)=,计算-4cosα-(π-3.14)+tanα+的值. |
22. 难度:中等 | |
如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为(x2+17)cm,正六边形的边长为(x2+2x)cm (其中x>0).求这两段铁丝的总长. |
23. 难度:中等 | |
在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图1~图3),请根据图表提供的信息,回答下列问题: (1)图1中“统计与概率”所在扇形的圆心角为______度; (2)图2、3中的a=______,b=______; (3)在60课时的总复习中,唐老师应安排多少课时复习“数与代数”内容? |
24. 难度:中等 | |
如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.过点D作DE⊥AB,过点C作CF⊥BD,垂足分别为E、F,连接EF,求证:△DEF为等边三角形. |
25. 难度:中等 | |
沈阳地铁一号线的开通运行给沈阳市民的出行方式带来了一些变化.小王和小林准备利用课余时间,以问卷的方式对沈阳市民的出行方式进行调查.如图是沈阳地铁一号线图(部分),小王和小林分别从太原街站(用A表示)、南市场站(用B表示)、青年大街站(用C表示)这三站中,随机选取一站作为调查的站点. (1)在这三站中,小王选取问卷调查的站点是太原街站的概率是多少?(请直接写出结果) (2)请你用列表法或画树状图(树形图)法,求小王选取问卷调查的站点与小林选取问卷调查的站点相邻的概率.(各站点用相应的英文字母表示) |
26. 难度:中等 | |
如图,正比例函数y1=k1x与反比例函数y2= 相交于A、B点.已知点A的坐标为A(4,n),BD⊥x轴于点D,且S△BDO=4.过点A的一次函数y3=k3x+b与反比例函数的图象交于另一点C,与x轴交于点E(5,0). (1)求正比例函数y1、反比例函数y2和一次函数y3的解析式; (2)结合图象,求出当k3x+b>>k1x时x的取值范围. |
27. 难度:中等 | |
如图所示,中原福塔(河南广播电视塔)是世界第-高钢塔.小明所在的课外活动小组在距地面268米高的室外观光层的点D处,测得地面上点B的俯角α为45°,点D到AO的距离DG为10米;从地面上的点B沿BO方向走50米到达点C处,测得塔尖A的仰角β为60°.请你根据以上数据计算塔高AO,并求出计算结果与实际塔高388米之间的误差.(参考数据:≈1.732,≈1.414.结果精确到0.1米) |
28. 难度:中等 | |
如图所示,P是⊙O外一点,PA是⊙O的切线,A是切点,B是⊙O 上一点,且PA=PB,连接AO、BO、AB,并延长BO与切线PA相交于点Q. (1)求证:PB是⊙O的切线; (2)求证:AQ•PQ=OQ•BQ; (3)设∠AOQ=α,若,OQ=15,求AB的长. |
29. 难度:中等 | |
如图,在平面直角坐标系中,顶点为(4,-1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3). (1)求此抛物线的解析式 (2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明; (3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积. |