1. 难度:中等 | |
-的倒数是( ) A.6 B.-6 C. D.- |
2. 难度:中等 | |
太阳的半径大约是696000千米,用科学记数法可表示为( ) A.696×103千米 B.69.6×104千米 C.6.96×105千米 D.6.96×106千米 |
3. 难度:中等 | |
如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是( ) A.40° B.50° C.60° D.140° |
4. 难度:中等 | |
用配方法解一元二次方程x2-4x=5时,此方程可变形为( ) A.(x+2)2=1 B.(x-2)2=1 C.(x+2)2=9 D.(x-2)2=9 |
5. 难度:中等 | |
不等式组的解集在数轴上表示正确的是( ) A. B. C. D. |
6. 难度:中等 | |
已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=( ) A. B. C. D.2 |
7. 难度:中等 | |
二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为( ) A.-3 B.3 C.-6 D.9 |
8. 难度:中等 | |
如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则cos∠OBC的值为( ) A. B. C. D. |
9. 难度:中等 | |
如图,一次函数y=x+3的图象与x轴,y轴交于A,B两点,与反比例函数的图象相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE.有下列四个结论: ①△CEF与△DEF的面积相等; ②△AOB∽△FOE; ③△DCE≌△CDF; ④AC=BD. 其中正确的结论是( ) A.①② B.①②③ C.①②③④ D.②③④ |
10. 难度:中等 | |
如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间函数关系可以用图象表示为( ) A. B. C. D. |
11. 难度:中等 | |
已知,|a-1|+=0,则a+b= . |
12. 难度:中等 | |
如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB的长为 . |
13. 难度:中等 | |
如图,▱ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=DC. 若△DEF的面积为2,则▱ABCD的面积为 . |
14. 难度:中等 | |
如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,将△ABC绕点C逆时针旋转至△A′B′C′,使得点A′恰好落在AB上,连接BB′,则BB′的长度为 . |
15. 难度:中等 | |
已知关于x的一元二次方程(m-2)2x2+(2m+1)x+1=0有两个不相等的实数根,则m的取值范围是 . |
16. 难度:中等 | |
如图所示,A、B是边长为1的小正方形组成的网格的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是 . |
17. 难度:中等 | |
如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分图形的面积为为 . |
18. 难度:中等 | |
如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为 . |
19. 难度:中等 | |
先化简,再求值:,其中. |
20. 难度:中等 | |
某学校为了解八年级学生的课外阅读情况,钟老师随机抽查部分学生,并对其暑假期间的课外阅读量进行统计分析,绘制成如图所示,但不完整的统计图.根据图示信息,解答下列问题: (1)求被抽查学生人数及课外阅读量的众数; (2)求扇形统计图汇总的a、b值; (3)将条形统计图补充完整; (4)若规定:假期阅读3本以上(含3本)课外书籍者为完成假期作业,据此估计该校600名学生中,完成假期作业的有多少人? |
21. 难度:中等 | |
如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N. 求证:AM=AN. |
22. 难度:中等 | ||||||||||
现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨. (1)设A地到甲地运送蔬菜x吨,请完成下表:
(3)怎样调运蔬菜才能使运费最少? |
23. 难度:中等 | |
已知:关于x的方程:mx2-(3m-1)x+2m-2=0. (1)求证:无论m取何值时,方程恒有实数根; (2)若关于x的二次函数y=mx2-(3m-1)x+2m-2的图象与x轴两交点间的距离为2时,求抛物线的解析式. |
24. 难度:中等 | |
如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP. (1)求证:直线CP是⊙O的切线. (2)若BC=2,sin∠BCP=,求点B到AC的距离. (3)在第(2)的条件下,求△ACP的周长. |
25. 难度:中等 | |
如图1,在直角坐标系中,已知点A(0,2)、点B(-2,0),过点B和线段OA的中点C作直线BC,以线段BC为边向上作正方形BCDE. (1)填空:点D的坐标为______,点E的坐标为______. (2)若抛物线y=ax2+bx+c(a≠0)经过A、D、E三点,求该抛物线的解析式. (3)若正方形和抛物线均以每秒个单位长度的速度沿射线BC同时向上平移,直至正方形的顶点E落在y轴上时,正方形和抛物线均停止运动. ①在运动过程中,设正方形落在y轴右侧部分的面积为s,求s关于平移时间t(秒)的函数关系式,并写出相应自变量t的取值范围. ②运动停止时,求抛物线的顶点坐标. |