1. 难度:中等 | |
|-|的相反数是( ) A. B.- C.3 D.-3 |
2. 难度:中等 | |
下图能说明∠1>∠2的是( ) A. B. C. D. |
3. 难度:中等 | |
下面四个几何体中,左视图是四边形的几何体共有( ) A.1个 B.2个 C.3个 D.4个 |
4. 难度:中等 | |
实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简的结果为( ) A.2a+b B.-2a+b C.b D.2a-b |
5. 难度:中等 | |
方程x(x-2)+x-2=0的解是( ) A.2 B.-2,1 C.-1 D.2,-1 |
6. 难度:中等 | |
如图所示:△ABC中,DE∥BC,AD=5,BD=10,AE=3.则CE的值为( ) A.9 B.6 C.3 D.4 |
7. 难度:中等 | |
方程有两个实数根,则k的取值范围是( ) A.k≥1 B.k≤1 C.k>1 D.k<1 |
8. 难度:中等 | |
小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x、乙立方体朝上一面朝上的数字为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线上的概率为( ) A. B. C. D. |
9. 难度:中等 | |
一次函数y1=kx+b(k≠0)与反比例函数,在同一直角坐标系中的图象如图所示,若y1>y2,则x的取值范围是( ) A.-2<x<0或x>1 B.x<-2或0<x<1 C.x>1 D.-2<x<1 |
10. 难度:中等 | |
如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当△BEF是直角三角形时,t(s)的值为( ) A. B.1 C.或1 D.或1或 |
11. 难度:中等 | |
计算:|-2|-(3-π)+2cos45°= . |
12. 难度:中等 | |
已知m和n是方程2x2-5x-3=0的两根,则= . |
13. 难度:中等 | |
若关于x、y的二元一次方程组的解满足x+y>1,则k的取值范围是 . |
14. 难度:中等 | |
如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠P=46°,则∠BAC= 度. |
15. 难度:中等 | |
某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD垂直平分BC,AD=BC=48cm,则圆柱形饮水桶的底面半径的最大值是 cm. |
16. 难度:中等 | |
如图,四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若四边形ABCD的面积为24cm2,则AC长是 cm. |
17. 难度:中等 | |
如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm,弧长是6πcm,那么围成的圆锥的高度是 cm. |
18. 难度:中等 | |
如图,矩形AOCB的两边OC、OA分别位x轴、y轴上,点B的坐标为B(,5),D是AB边上的一点.将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图象上,那么该函数的解析式是 . |
19. 难度:中等 | |
解不等式组:,并把解集在数轴上表示出来. |
20. 难度:中等 | |
我市建设森林城市需要大量的树苗,某生态示范园负责对甲、乙、丙、丁四个品种的树苗共500株进行树苗成活率试验,从中选择成活率高的品种进行推广.通过实验得知:丙种树苗的成活率为89.6%,把实验数据绘制成下面两幅统计图(部分信息未给出). (1)实验所用的乙种树苗的数量是______株. (2)求出丙种树苗的成活数,并把图2补充完整. (3)你认为应选哪种树苗进行推广?请通过计算说明理由. |
21. 难度:中等 | |
如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于N,连接MN,DN.请你判定四边形BMDN是什么特殊四边形,并说明理由. |
22. 难度:中等 | |
小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天)的函数关系式如图2所示. (1)观察图象,直接写出日销售量的最大值; (2)求小明家樱桃的日销售量y与上市时间x的函数解析式; (3)试比较第10天与第12天的销售金额哪天多? |
23. 难度:中等 | |
已知抛物线的函数解析式为y=ax2+bx-3a(b<0),若这条抛物线经过点(0,-3),方程ax2+bx-3a=0的两根为x1,x2,且|x1-x2|=4. (1)求抛物线的顶点坐标. (2)已知实数x>0,请证明x+≥2,并说明x为何值时才会有x+=2. |
24. 难度:中等 | |
如图,AB是⊙O的弦,D为OA半径的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB. (1)求证:BC是⊙O的切线; (2)连接AF,BF,求∠ABF的度数; (3)如果CD=15,BE=10,sinA=,求⊙O的半径. |
25. 难度:中等 | |
综合与实践:如图,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D是该抛物线的顶点. (1)求直线AC的解析式及B、D两点的坐标; (2)点P是x轴上一个动点,过P作直线l∥AC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A、P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由. (3)请在直线AC上找一点M,使△BDM的周长最小,求出M点的坐标. |