1. 难度:中等 | |
下列运算正确的是( ) A.2x+3y=5xy B.a3-a2=a C.a-(a-b)=-b D.(a-1)(a+2)=a2+a-2 |
2. 难度:中等 | |
如图,数轴上A、B两点分别对应实数a、b,则下列结论正确的是( ) A.ab>0 B.a-b>0 C.a+b>0 D.|a|-|b|>0 |
3. 难度:中等 | |
关于x的方程(a-5)x2-4x-1=0有实数根,则a满足( ) A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5 |
4. 难度:中等 | |
反比例函数y=(2m-1),当x>0时,y随x的增大而增大,则m的值是( ) A.±1 B.小于的实数 C.-1 D.1 |
5. 难度:中等 | |
如图,在△ABC中,DE∥BC,若,则的值为( ) A.1:9 B.1:8 C.1:4 D.1:2 |
6. 难度:中等 | |
如图,在△ABC中,AB=2,AC=1,以AB为直径的圆与AC相切,与边BC交于点D,则AD的长为( ) A. B. C. D. |
7. 难度:中等 | |
已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是( ) A. B. C. D. |
8. 难度:中等 | |
如图,在凯里一中学生耐力测试比赛中,甲、乙两学生测试的路程s(米)与时间t(秒)之间的函数关系的图象分别为折线OABC和线段OD,下列说法正确的是( ) A.乙比甲先到终点 B.乙测试的速度随时间增加而增大 C.比赛进行到29.4秒时,两人出发后第一次相遇 D.比赛全程甲的测试速度始终比乙的测试速度快 |
9. 难度:中等 | |
-8的立方根是 . |
10. 难度:中等 | |
某市2011年在校初中学生人数约为15.9万,用科学记数法表示为 . |
11. 难度:中等 | |
分解因式:xy2-2xy+x= . |
12. 难度:中等 | |
如图,已知AB是⊙O的直径,弦CD⊥AB,AC=2,BC=1,那么sin∠ABD的值是 . |
13. 难度:中等 | |
若函数,则当函数值y=8时,自变量x的值等于 . |
14. 难度:中等 | |
一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分钟)之间的函数关系如图所示,关停进水管后,经过 分钟,容器中的水恰好放完. |
15. 难度:中等 | |
如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为 cm. |
16. 难度:中等 | |
如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积是1cm2,则它移动的距离AA′等于 cm. |
17. 难度:中等 | |
求不等式组的整数解. |
18. 难度:中等 | |||||||||||||||||||
某区对参加2010年中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:
(2)甲同学说:“我的视力情况是此次抽样调查所得数据的中位数”,问甲同学的视力情况应在什么范围? (3)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是______;并根据上述信息估计全区初中毕业生中视力正常的学生有多少人? |
19. 难度:中等 | |
某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,即整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,问该品牌饮料一箱有多少瓶? |
20. 难度:中等 | |
在△ABC中,∠BAC=90°,AB<AC,M是BC边的中点,过点M作MP⊥MQ交AB于点P,交NC于点Q,试求BP2,PQ2,CQ2三者之间的数量关系,并证明你的结论. |
21. 难度:中等 | |||||||||
上海世博会门票价格如表所示:
(1)有多少种购票方案?列举所有可能结果; (2)如果从上述方案中任意选中一种方案购票,求恰好选到11张门票的概率. |
22. 难度:中等 | |
如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆. 求证:(1)AC是⊙D的切线; (2)AB+EB=AC. |
23. 难度:中等 | |
如图,某天然气公司的主输气管道从A市的东偏北30°方向直线延伸,测绘员在A处测得要安装天然气的M小区在A市东偏北60°方向,测绘员沿主输气管道步行2000米到达C处,测得小区M位于C的北偏西60°方向,请你在主输气管道上寻找支管道连接点N,使到该小区铺设的管道最短,并求AN的长? |
24. 难度:中等 | |
有一种螃蟹,从海里捕获后不放养最多只能存活两天,如果在池塘里放养,可以延长存活时间,但每天也有一定数量的螃蟹死去,假设放养期内螃蟹的个体重量基本保持不变.现有一经销商,按市场价收购了这种活螃蟹1000千克放养在池塘内,此时市场价为每千克30元.据推测,此后每千克活螃蟹的市场价在前5天内不发生变化,从第6天开始每天涨价1元,放养30后,每天涨价2元,但是,放养一天需各种费用支出400元,且每天还有10千克螃蟹死去,假设死螃蟹当天全部出售,售价都是每千克20元. (1)写出市场价P(元)与放养时间X(天)之间的函数关系; (2)如果放养X天后将活螃蟹一次性出售,并记1000千克螃蟹的销售总额Q(元),请求出Q(元)与放养时间X(天)之间的函数关系; (3)该经销商将这批螃蟹放养多少天后出售,可获得最大利润?并求出最大利润. |
25. 难度:中等 | |
如图,在平面直角坐标系xOy中,抛物线y=x2-x-10与y轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连接AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒). (1)求A,B,C三点的坐标和抛物线的顶点的坐标; (2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程; (3)当0<t<时,△PQF的面积是否总为定值?若是,求出此定值,若不是,请说明理由; (4)当t为何值时,△PQF为等腰三角形?请写出解答过程. |