1. 难度:中等 | |
计算的值为( ) A.±4 B.±2 C.4 D.2 |
2. 难度:中等 | |
下列图案中,既是轴对称图形又是中心对称图形的有( ) A.1个 B.2个 C.3个 D.4个 |
3. 难度:中等 | |
如图所示,下列选项中,正六棱柱的左视图是( ) A. B. C. D. |
4. 难度:中等 | |
下列调查中,适合采用全面调查(普查)方式的是( ) A.对长江水质情况的调查 B.对端午节期间市场上粽子质量情况的调查 C.对某通信卫星的零部件的质量情况的调查 D.对某类烟花爆竹燃放安全情况的调查 |
5. 难度:中等 | |
已知圆锥的侧面积为8πcm2,侧面展开图的圆心角为45°,则该圆锥的母线长为( ) A.64cm B.8cm C.2cm D.cm |
6. 难度:中等 | |
二次函数y=ax2+bx+c的图象如图所示,则反比例函数与一次函数y=bx+c在同一坐标系中的大致图象是( ) A. B. C. D. |
7. 难度:中等 | |
如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是( ) A.AB=CD B.AD=BC C.AB=BC D.AC=BD |
8. 难度:中等 | |
一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是( ) A.m=3,n=5 B.m=n=4 C.m+n=4 D.m+n=8 |
9. 难度:中等 | |
如图,直径为10的⊙A经过点C和点O,点B是y轴右侧⊙A优弧上一点,∠OBC=30°,则点C的坐标为( ) A.(0,5) B.(0,5) C.(0,) D.(0,) |
10. 难度:中等 | ||||||||||||
如表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2012个格子中的数为( )
A.2 B.-3 C.0 D.1 |
11. 难度:中等 | |
如图所示,正方形ABCD内接于⊙O,直径MN∥AD,则阴影部分面积占圆面积( ) A. B. C. D. |
12. 难度:中等 | |
如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是( ) A.1 B.2 C.3 D.4 |
13. 难度:中等 | |
地球上的海洋面积约为361000000km2,则科学记数法可表示为 km2. |
14. 难度:中等 | |
分解因式:3x2-27= . |
15. 难度:中等 | |
乐乐和爸爸到广场散步,爸爸的身高是176cm,乐乐的身高是156cm,在同一时刻爸爸的影长是44cm,那么乐乐的影长是 cm. |
16. 难度:中等 | |
如图,D是AB边上的中点,将△ABC沿过D的直线折叠,使点A落在BC上F处,若∠B=50°,则∠BDF= 度. |
17. 难度:中等 | |
如图,AB是⊙O的直径,PA切⊙O于A,OP交⊙O于C,连BC.若∠P=30°,则∠B= 度. |
18. 难度:中等 | |
如图,矩形ABCD中,AB=4,BC=8,E为CD的中点,点P、Q为BC上两个动点,且PQ=3,当CQ= 时,四边形APQE的周长最小. |
19. 难度:中等 | |
计算:(-1)2008-(π-3)+ |
20. 难度:中等 | |
如图,方格纸上的每个小方格都是边长为1小正方形,我们把格点连线为边的三角形称为“格点三角形”,图中的△ABC就是一个格点三角形. (1)填空:BC=______ |
21. 难度:中等 | |
为了了解我县初中学生体育活动情况,随机调查了720名八年级学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”,利用所得的数据制成了扇形统计图和频数分布直方图.根据图示,解答下列问题: (1)若在被调查的学生中随机选出一名学生测试其体育成绩,选出的是“每天锻炼超过1小时”的学生的概率是多少? (2)“没时间”锻炼的人数是多少?并补全频数分布直方图; (3)2012年我县八年级学生约为1.2万人,按此调查,可以估计2012年我县八年级学生中每天锻炼未超过1小时的学生约有多少万人? |
22. 难度:中等 | |
如图,热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为66 m,这栋高楼有多高?(结果精确到0.1 m,参考数据:≈1.73) |
23. 难度:中等 | |
已知∠AOB=60°,半径为3cm的⊙P沿边OA从右向左平行移动,与边OA相切的切点记为点C. (1)⊙P移动到与边OB相切时(如图),切点为D,求劣弧的长; (2)⊙P移动到与边OB相交于点E,F,若EF=4cm,求OC的长. |
24. 难度:中等 | |
小王从A地前往B地,到达后立刻返回.他与A地的距离y(千米)和所用时间x(小时)之间的函数关系如图所示. (1)小王从B地返回到A地用了多少小时? (2)求小王出发6小时后距A地多远? (3)在A、B之间有一C地,小王从去吋途经C地,到返回时路过C地,共用了2小时20分,求A、C 两地相距多远? |
25. 难度:中等 | |
情境观察 将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示. 观察图2可知:与BC相等的线段是______,∠CAC′=______°. 问题探究 如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论. 拓展延伸 如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由. |
26. 难度:中等 | |
已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C. (1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐标; (2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由; (3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标. |