1. 难度:中等 | |
-3的相反数是( ) A.3 B.-3 C. D.- |
2. 难度:中等 | |
下列根式中不是最简二次根式的是( ) A. B. C. D. |
3. 难度:中等 | |
若分式的值为零,则x的值是( ) A.3 B.-3 C.±3 D.0 |
4. 难度:中等 | |
如图所示的物体的左视图(从左面看得到的视图)是( ) A. B. C. D. |
5. 难度:中等 | |||||||||||||||||||||||
下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位数是( )
A.28 B.28.5 C.29 D.29.5 |
6. 难度:中等 | |
两个相似三角形的面积比是9:16,则这两个三角形的相似比是( ) A.9:16 B.3:4 C.9:4 D.3:16 |
7. 难度:中等 | |
若⊙O1与⊙O2相切,且O1O2=5,⊙O1的半径r1=2,则⊙O2的半径r2是( ) A.3 B.5 C.7 D.3或7 |
8. 难度:中等 | |
如图,在菱形ABCD中,DE⊥AB,cosA=,AE=3,则tan∠DBE的值是( ) A. B.2 C. D. |
9. 难度:中等 | |
不等式组的解集在数轴上表示正确的是( ) A. B. C. D. |
10. 难度:中等 | |
在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径OB=6cm,高OC=8cm.则这个圆锥漏斗的侧面积是( ) A.30cm2 B.30πcm2 C.60πcm2 D.120cm2 |
11. 难度:中等 | |
一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为( ) A. B. C. D. |
12. 难度:中等 | |
如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO的大小是( ) A.70° B.110° C.140° D.150° |
13. 难度:中等 | |
分解因式:am+an+bm+bn= . |
14. 难度:中等 | |
平面直角坐标系中,点A(2,3)关于x轴的对称点坐标为 . |
15. 难度:中等 | |
为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15~20包括15,不包括20,以下同),请根据统计图计算成绩在20~30次的频率是 . |
16. 难度:中等 | |
已知,则代数式的值为 . |
17. 难度:中等 | |
如图,圆O的半径OA=5cm,弦AB=8cm,点P为弦AB上一动点,则点P到圆心O的最短距离是 cm. |
18. 难度:中等 | |
如图所示,两个全等菱形的边长为1厘米,一只蚂蚁由A点开始按ABCDEFCGA的顺序沿菱形的边循环运动,行走2011厘米后停下,则这只蚂蚁停在 点. |
19. 难度:中等 | |
解方程:-=3. |
20. 难度:中等 | |
如图,在△ABC中,BC>AC,点D在BC上,且DC=AC. (1)利用直尺与圆规先作∠ACB的平分线,交AD于F点,再作线段AB的垂直平分线,交AB于点E,最后连接EF. (2)若线段BD的长为6,求线段EF的长. |
21. 难度:中等 | |
不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为. (1)求袋中黄球的个数; (2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率. |
22. 难度:中等 | |
已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2) (1)试确定上述正比例函数和反比例函数的表达式; (2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值? (3)点M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由. |
23. 难度:中等 | |
已知正方形ABCD的边长为4,E是CD上一个动点,以CE为一条直角边作等腰直角三角形CEF,连接BF、BD、FD. (1)BD与CF的位置关系是______. (2)①如图,当CE=4(即点E与点D重合)时,△BDF的面积为______. ②如图,当CE=2(即点E为CD中点)时,△BDF的面积为______. ③如图,当CE=3时,△BDF的面积为______. (3)如图,根据上述计算的结果,当E是CD上任意一点时,请提出你对△BDF面积与正方形ABCD的面积之间关系的猜想,并证明你的猜想. |
24. 难度:中等 | |
探究一:如图,正△ABC中,E为AB边上任一点,△CDE为正三角形,连接AD,猜想AD与BC的位置关系,并说明理由. 探究二:如图,若△ABC为任意等腰三角形,AB=AC,E为AB上任一点,△CDE为等腰三角形,DE=DC,且∠BAC=∠EDC,连接AD,猜想AD与BC的位置关系,并说明理由. |
25. 难度:中等 | |
如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB. (1)求证:PC是⊙O的切线; (2)求证:BC=AB; (3)点M是的中点,CM交AB于点N,若AB=4,求MN•MC的值. |
26. 难度:中等 | |
如图,已知抛物线y=x2+bx+c与坐标轴交于A、B、C三点,A点的坐标为(-1,0),过点C的直线y=x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1. (1)填空:点C的坐标是______,b=______,c=______; (2)求线段QH的长(用含t的式子表示); (3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由. |