1. 难度:中等 | |
若方程x2-5x=0的一个根是a,则a2-5a+2的值为( ) A.-2 B.0 C.2 D.4 |
2. 难度:中等 | |
如图,⊙O的半径OA等于5,半径OC与弦AB垂直,垂足为D,若OD=3,则弦AB的长为( ) A.10 B.8 C.6 D.4 |
3. 难度:中等 | |
将抛物线y=2x2经过怎样的平移可得到抛物线y=2(x+3)2+4( ) A.先向左平移3个单位,再向上平移4个单位 B.先向左平移3个单位,再向下平移4个单位 C.先向右平移3个单位,再向上平移4个单位 D.先向右平移3个单位,再向下平移4个单位 |
4. 难度:中等 | |
小莉站在离一棵树水平距离为a米的地方,用一块含30°的直角三角板按如图所示的方式测量这棵树的高度,已知小莉的眼睛离地面的高度是1.5米,那么她测得这棵树的高度为( ) A.()米 B.(a)米 C.(1.5+)米 D.(1.5+a)米 |
5. 难度:中等 | |
如图,以某点为位似中心,将△AOB进行位似变换得到△CDE,记△AOB与△CDE对应边的比为k,则位似中心的坐标和k的值分别为( ) A.(0,0),2 B.(2,2), C.(2,2),2 D.(2,2),3 |
6. 难度:中等 | |
将抛物线y=x2+1绕原点O旋转180°,则旋转后的抛物线的解析式为( ) A.y=-x2 B.y=-x2+1 C.y=-x2-1 D.y=x2-1 |
7. 难度:中等 | |
如图,PA、PB与⊙O相切,切点分别为A、B,PA=3,∠P=60°,若AC为⊙O的直径,则图中阴影部分的面积为( ) A. B. C. D.π |
8. 难度:中等 | |
已知b<0时,二次函数y=ax2+bx+a2-1的图象如下列四个图之一所示.根据图象分析,a的值等于( ) A.-2 B.-1 C.1 D.2 |
9. 难度:中等 | |
若△ABC∽△DEF,且对应边BC与EF的比为2:3,则△ABC与△DEF的面积比等于 . |
10. 难度:中等 | |
如图,⊙O的直径是AB,CD是⊙O的弦,若∠D=70°,则∠ABC等于 度. |
11. 难度:中等 | |
如图,∠ABC=90°,O为射线BC上一点,以点O为圆心,OB长为半径作⊙O,将射线BA绕点B按顺时针方向旋转至BA′,若BA′与⊙O相切,则旋转的角度α(0°<α<180°)等于 . |
12. 难度:中等 | |
等腰三角形ABC中,BC=8,AB、AC的长是关于x的方程x2-10x+m=0的两根,则m的值为 . |
13. 难度:中等 | |
解方程:2x2-4x+1=0. |
14. 难度:中等 | |
计算:-tan45°+sin245° |
15. 难度:中等 | |
已知:关于x的方程x2+2x=3-4k有两个不相等的实数根(其中k为实数) (1)求k的取值范围; (2)若k为非负整数,求此时方程的根. |
16. 难度:中等 | |
已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°. (1)求证:DC是⊙O的切线; (2)若AB=2,求DC的长. |
17. 难度:中等 | |
已知:如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1. (1)求证:△ABD∽△CBA; (2)若DE∥AB交AC于点E,请再写出另一个与△ABD相似的三角形,并直接写出DE的长. |
18. 难度:中等 | |
已知:如图,∠MAN=45°,B为AM上的一个定点.若点P在射线AN上,以P为圆心,PA为半径的圆与射线AN的另一个交点为C.请确定⊙P的位置,使BC恰与⊙P相切. (1)画出⊙P;(不要求尺规作图,不要求写画法) (2)连接BC、BP并填空: ①∠ABC=______°; ②比较大小:∠ABP______∠CBP.(用“>”“<”或“=”连接)) |
19. 难度:中等 | |
已知抛物线y=ax2+bx+c经过点A(0,3)、B(4,3)、C(1,0)、 (1)填空:抛物线的对称轴为直线x=______,抛物线与x轴的另一个交点D的坐标为______; (2)求该抛物线的解析式. |
20. 难度:中等 | |
已知:如图,等腰△ABC中,AB=BC,AE⊥BC于点E,EF⊥AB于点F,若CE=1,,求EF的长. |
21. 难度:中等 | |
某水果批发市场经销一种水果,如果每千克盈利10元,每天可售出500千克、经市场调查发现,在进货价不变的情况下,若每千克这种水果在原售价的基础上每涨价1元,日销售量将减少20千克. (1)如果市场某天销售这种水果盈利了6000元,同时顾客又得到了实惠,那么每千克这种水果涨了多少元? (2)设每千克这种水果涨价x元时(0<x≤25),市场每天销售这种水果所获利润为y元.若不考虑其他因素,单纯从经济角度看,每千克这种水果涨价多少元时,市场每天销售这种水果盈利最多?最多盈利多少元? |
22. 难度:中等 | |
已知:如图,△ABC中,AB=3,∠BAC=120°,AC=1,D为AB延长线上一点,BD=1,点P在∠BAC的平分线上,且满足△PAD是等边三角形. (1)求证:BC=BP; (2)求点C到BP的距离. |
23. 难度:中等 | |
已知关于x的方程x2-2ax-a+2b=0,其中a、b为实数. (1)若此方程有一个根为2a(a<0),判断a与b的大小关系并说明理由; (2)若对于任何实数a,此方程都有实数根,求b的取值范围. |
24. 难度:中等 | |
已知:如图,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D,OC交AB于E. (1)求∠D的度数; (2)求证:AC2=AD•CE; (3)求的值. |
25. 难度:中等 | |
已知:抛物线y=-x2-2(a-1)x-(a2-2a)与x轴交于点A(x1,0)、B(x2,0),且x1<1<x2. (1)求A、B两点的坐标(用a表示); (2)设抛物线的顶点为C,求△ABC的面积; (3)若a是整数,P为线段AB上的一个动点(P点与A、B两点不重合),在x轴上方作等边△APM和等边△BPN,记线段MN的中点为Q,求抛物线的解析式及线段PQ的长的取值范围. |