1. 难度:中等 | |
当x=1时,代数式2x+5的值为( ) A.3 B.5 C.7 D.-2 |
2. 难度:中等 | |
直角坐标系中,点P(1,4)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 |
3. 难度:中等 | |
据省统计局公布的数据,去年底我省农村居民人均收入约6600元,用科学记数法表示应记为( ) A.0.66×104 B.6.6×103 C.66×102 D.6.6×104 |
4. 难度:中等 | |
如图所示几何体的左视图是( ) A. B. C. D. |
5. 难度:中等 | |
下列四幅图形中,表示两颗圣诞树在同一时刻阳光下的影子的图形可能是( ) A. B. C. D. |
6. 难度:中等 | |
如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( ) A.相离 B.外切 C.内切 D.相交 |
7. 难度:中等 | |
不等式组:的解是( ) A.-2≤x≤2 B.x≤2 C.x≥-2 D.x<2 |
8. 难度:中等 | |
将叶片图案旋转180°后,得到的图形是( ) A. B. C. D. |
9. 难度:中等 | |
下图能说明∠1>∠2的是( ) A. B. C. D. |
10. 难度:中等 | |
二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a>0;②c>0;③b2-4ac>0,其中正确的个数是( ) A.0个 B.1个 C.2个 D.3个 |
11. 难度:中等 | |
矩形的对称轴有 条. |
12. 难度:中等 | |
函数y=的自变量x的取值范围为 . |
13. 难度:中等 | |
如图,AD=BC,要使四边形ABCD是平行四边形,还需补充的一个条件是: .(答案不唯一) |
14. 难度:中等 | |
秦老师想制作一个圆锥模型,该模型的侧面是用一个半径为9cm、圆心角为240°的扇形铁皮制作的,另外还需用一块圆形铁皮做底.请你帮秦老师计算这块圆形铁皮的半径为 cm. |
15. 难度:中等 | |
小明背对小亮,让小亮按下列四个步骤操作: 第一步 分发左、中、右三堆牌,每堆牌不少于3张,且各堆牌现有的张数相同; 第二步 从左边一堆拿出3张,放入中间一堆; 第三步 从右边一堆拿出2张,放入中间一堆; 第四步 左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆. 这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌现有的张数是 . |
16. 难度:中等 | |
方程的解是 . |
17. 难度:中等 | |
如图,在△ABC和△ABD中,AD和BC交于点O,∠1=∠2,请你添加一个重要条件(不再添加其它线段,不再标注或使用其它字母),使AC=BD,并给出证明.你添加的条件是______. |
18. 难度:中等 | |
北京08奥运会吉祥物是“贝贝、晶晶、欢欢、迎迎、妮妮”,现将三张分别印有“欢欢、迎迎、妮妮”这三个吉祥物图案的卡片(卡片的形状大小一样,质地相同)放入盒子. (1)小芳从盒子中任取一张,取到卡片欢欢的概率是多少? (2)小芳从盒子中取出一张卡片,记下名字后放回,再从盒子中取出第二张卡片,记下名字.用列表或画树形图列出小芳取到的卡片的所有可能情况,并求出两次都取到卡片欢欢的概率. |
19. 难度:中等 | |
现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示. 观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形;②涂黑部分都是三个小正三角形. 请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征. |
20. 难度:中等 | |
如图,已知AB是⊙O的直径,点C,D在⊙O上,且AB=5,BC=3. (1)求sin∠BAC的值; (2)如果OE⊥AC,垂足为E,求OE的长; (3)求tan∠ADC的值.(结果保留根号) |
21. 难度:中等 | |
请阅读下列解题过程:已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状. 【解析】 ∵a2c2-b2c2=a4-b4,A ∴c2(a2-b2)=(a2+b2)(a2-b2),B ∴c2=a2+b2,C ∴△ABC为直角三角形.D 问: (1)在上述解题过程中,从哪一步开始出现错误:______; (2)错误的原因是:______; (3)本题正确的结论是:______. |
22. 难度:中等 | |
某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如右下图所示,其中BA是线段,且BA∥x轴,AC是射线. (1)当x≥30,求y与x之间的函数关系式; (2)若小李4月份上网20小时,他应付多少元的上网费用? (3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少? |
23. 难度:中等 | |
某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题: (1)该年级报名参加丙组的人数为______; (2)该年级报名参加本次活动的总人数______,并补全频数分布直方图; (3)根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组? |
24. 难度:中等 | |
初三(1)班数学兴趣小组在社会实践活动中,进行了如下的课题研究:用一定长度的铝合金材料,将它设计成外观为长方形的三种框架,使长方形框架面积最大. 小组讨论后,同学们做了以下三种试验: 请根据以上图案回答下列问题: (1)在图案(1)中,如果铝合金材料总长度(图中所有黑线的长度和)为6米,当AB为1米,长方形框架ABCD的面积是______m2; (2)在图案(2)中,如果铝合金材料总长度为6米,设AB为x米,长方形框架ABCD的面积为S=______(用含x的代数式表示);当AB=______时米,长方形框架ABCD的面积S最大;在图案(3)中,如果铝合金材料总长度为l米,设AB为x米,当AB是多少米时,长方形框架ABCD的面积S最大. |
25. 难度:中等 | |
如图,平面直角坐标系中,直线AB与x轴,y轴分别交于A(3,0),B(0,)两点,点C为线段AB上的一动点,过点C作CD⊥x轴于点D. (1)求直线AB的解析式; (2)若S梯形OBCD=,求点C的坐标; (3)在第一象限内是否存在点P,使得以P,O,B为顶点的三角形与△OBA相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由. |