1. 难度:中等 | |
如图,在△ABC中,∠C=90°,AC=8,AB=10,点P在AC上,AP=2,若⊙O的圆心在线段BP上,且⊙O与AB、AC都相切,则⊙O的半径是( ) A.1 B. C. D. |
2. 难度:中等 | |
已知⊙O1与⊙O2内切,它们的半径分别为2和3,则这两圆的圆心距d满足( ) A.d=5 B.d=1 C.1<d<5 D.d>5 |
3. 难度:中等 | |
抛物线y=ax2+bx+c的图象如图,则下列结论:①abc>0;②a+b+c=2;③a>;④b<1.其中正确的结论是( ) A.①② B.②③ C.②④ D.③④ |
4. 难度:中等 | |
小明、小亮、小梅、小花四人共同探究代数式x2-4x+5的值的情况.他们作了如下分工:小明负责找值为1时x的值,小亮负责找值为0时x的值,小梅负责找最小值,小花负责找最大值.几分钟后,各自通报探究的结论,其中错误的是( ) A.小明认为只有当x=2时,x2-4x+5的值为1 B.小亮认为找不到实数x,使x2-4x+5的值为0 C.小梅发现x2-4x+5的值随x的变化而变化,因此认为没有最小值 D.小花发现当x取大于2的实数时,x2-4x+5的值随x的增大而增大,因此认为没有最大值 |
5. 难度:中等 | |
如图,三角形ABC和DEF是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF=90°,点B,C,E,F在同一直线上,现从点C,E重合的位置出发,让三角形ABC在直线EF上向右作匀速运动,而DEF的位置不动,设两个三角形重合部分的面积为y,运动的距离为x,下面表示y与x的函数关系的图象大致是( ) A. B. C. D. |
6. 难度:中等 | |
若不等式组的解集是x>3,则m的取值范围是( ) A.m≤3 B.m<3 C.m>3 D.m=3 |
7. 难度:中等 | |
在Rt△ABC的直角边AC边上有一动点P(点P与点A,C不重合),过点P作直线截得的三角形与△ABC相似,满足条件的直线最多有( ) A.1条 B.2条 C.3条 D.4条 |
8. 难度:中等 | |
如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于( ) A.3:2:1 B.5:3:1 C.25:12:5 D.51:24:10 |
9. 难度:中等 | |
若一直角三角形的斜边长为c,内切圆半径是r,则内切圆的面积与三角形面积之比是( ) A. B. C. D. |
10. 难度:中等 | |
抛物线y=ax2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a的取值范围是( ) A.≤a≤1 B.≤a≤2 C.≤a≤1 D.≤a≤2 |
11. 难度:中等 | |
设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是( ) A. B. C. D. |
12. 难度:中等 | |
如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是( ) A. B.1- C.-1 D.1- |
13. 难度:中等 | |
已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(-1,0),(3,0).对于下列命题:①b-2a=0;②abc<0;③a-2b+4c<0;④8a+c>0.其中正确的有( ) A.3个 B.2个 C.1个 D.0个 |
14. 难度:中等 | |
小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为( ) A. B. C. D. |
15. 难度:中等 | |
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论: ①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数). 其中正确的结论有( ) A.2个 B.3个 C.4个 D.5个 |
16. 难度:中等 | |
如图,点A1,A2,A3,A4在射线OA上,点B1,B2,B3在射线OB上,且A1B1∥A2B2∥A3B3,A2B1∥A3B2∥A4B3.若△A2B1B2,△A3B2B3的面积分别为1,4,则图中三个阴影三角形面积之和为 . |
17. 难度:中等 | |
如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为 cm2. |
18. 难度:中等 | |
设-1≤x≤2,则|x-2|-|x|+|x+2|的最大值与最小值之差为 . |
19. 难度:中等 | |
若抛物线y=2x2-px+4p+1中不管p取何值时都通过定点,则定点坐标为 . |
20. 难度:中等 | |
两个反比例函数y=,y=在第一象限内的图象如图所示.点P1,P2,P3、…、P2007在反比例函数y=上,它们的横坐标分别为x1、x2、x3、…、x2007,纵坐标分别是1,3,5…共2007个连续奇数,过P1,P2,P3、…、P2007分别作y轴的平行线,与y=的图象交点依次为Q1(x1′,y1′)、Q1(x2′,y2′)、…、Q2(x2007′,y2007′), 则|P2007Q2007|= . |
21. 难度:中等 | |
计算:6tan230°-sin60°-2sin45°+. |
22. 难度:中等 | |
如图,等腰梯形ABCD中,AD∥BC,M、N分别是AD、BC的中点,E、F分别是BM、CM中点. (1)求证:四边形MENF是菱形; (2)若四边形MENF是正方形,请探索等腰梯形ABCD的高和底边BC的数量关系,并证明你的结论. |
23. 难度:中等 | |
如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,连接DE、OE. (1)求证:DE是⊙O的切线; (2)如果⊙O的半径是cm,ED=2cm,求AB的长. |
24. 难度:中等 | |
如图,在直角坐标平面内,函数(x>0,m是常数)的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB. (1)若△ABD的面积为4,求点B的坐标; (2)求证:DC∥AB; (3)当AD=BC时,求直线AB的函数解析式. |
25. 难度:中等 | |
日本福岛出现核电站事故后,我国国家海洋局高度关注事态发展,紧急调集海上巡逻的海检船,在相关海域进行现场监测与海水采样,针对核泄漏在极端情况下对海洋环境的影响及时开展分析评估.如图,上午9时,海检船位于A处,观测到某港口城市P位于海检船的北偏西67.5°方向,海检船以21海里/时 的速度向正北方向行驶,下午2时海检船到达B处,这时观察到城市P位于海检船的南偏西36.9°方向,求此时海检船所在B处与城市P的距离? (参考数据:,,,) |
26. 难度:中等 | |
如图,在Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于点G,过点A作AE∥DB交CB的延长线于点E,过点B作BF∥CA交DA的延长线于点F,AE,BF相交于点H. (1)图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线) (2)证明:四边形AHBG是菱形; (3)若使四边形AHBG是正方形,还需在Rt△ABC的边长之间再添加一个什么条件?请你写出这个条件.(不必证明) |
27. 难度:中等 | |
如图,抛物线的顶点坐标是,且经过点A(8,14). (1)求该抛物线的解析式; (2)设该抛物线与y轴相交于点B,与x轴相交于C、D两点(点C在点D的左边),试求点B、C、D的坐标; (3)设点P是x轴上的任意一点,分别连接AC、BC.试判断:PA+PB与AC+BC的大小关系,并说明理由. |
28. 难度:中等 | |
如图所示,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,点P不与点0、点A重合.连接CP,过点P作PD交AB于点D. (1)求点B的坐标; (2)当点P运动什么位置时,△OCP为等腰三角形,求这时点P的坐标; (3)当点P运动什么位置时,使得∠CPD=∠OAB,且,求这时点P的坐标. |
29. 难度:中等 | |
如图,直线y=-x+20与x轴、y轴分别交于A、B两点,动点P从A点开始在线段AO上以每秒3个长度单位的速度向原点O运动.动直线EF从x轴开始以每秒1个长度单位的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于E、F点.连接FP,设动点P与动直线EF同时出发,运动时间为t秒. (1)当t=1秒时,求梯形OPFE的面积. (2)t为何值时,梯形OPFE的面积最大,最大面积是多少? (3)设t的值分别取t1、t2时(t1≠t2),所对应的三角形分别为△AF1P1和△AF2P2.试判断这两个三角形是否相似,请证明你的判断. |
30. 难度:中等 | |
如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s). (1)求x为何值时,PQ⊥AC; (2)设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式; (3)当0<x<2时,求证:AD平分△PQD的面积; (4)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围(不要求写出过程). |
31. 难度:中等 | |
已知矩形ABCD和点P,当点P在图1中的位置时,则有结论:S△PBC=S△PAC+S△PCD 理由:过点P作EF垂直BC,分别交AD、BC于E、F两点. ∵S△PBC+S△PAD=BC•PF+AD•PE=BC(PF+PE)=BC•EF=S矩形ABCD, 又∵S△PAC+S△PCD+S△PAD=S矩形ABCD,∴S△PBC+S△PAD=S△PAC+S△PCD+S△PAD,∴S△PBC=S△PAC+S△PCD. 请你参考上述信息,当点P分别在图2,图3中的位置时,S△PBC、S△PAC、S△PCD又有怎样的数量关系?请写出你对上述两种情况的猜想,并选择其中一种情况的猜想给予证明. |
32. 难度:中等 | |
设抛物线y=ax2+bx-2与x轴交于两个不同的点A(-1,0)、B(m,0),与y轴交于点C,且∠ACB=90度. (1)求m的值和抛物线的解析式; (2)已知点D(1,n)在抛物线上,过点A的直线y=x+1交抛物线于另一点E.若点P在x轴上,以点P、B、D为顶点的三角形与△AEB相似,求点P的坐标; (3)在(2)的条件下,△BDP的外接圆半径等于______ |