1. 难度:中等 | |
-|-3|=( ) A.-3 B.- C. D.3 |
2. 难度:中等 | |
下列运算正确的是( ) A.x•x2=x2 B.(xy)2=xy2 C.(x2)3=x6 D.x10÷x2=x5 |
3. 难度:中等 | |
下列如图是由5个相同大小的正方体搭成的几何体,则它的俯视图是( ) A. B. C. D. |
4. 难度:中等 | |
在下列图形中,既是轴对称图形,又是中心对称图形的是( ) A. 直角三角形 B. 正五边形 C. 正方形 D. 等腰梯形 |
5. 难度:中等 | |
若代数式有意义,则x的取值范围是( ) A. B.x≥ C.x≤ D.x≠- |
6. 难度:中等 | |
在Rt△ABC中,∠C=90°,AC=3,BC=4,则sinA的值是( ) A. B. C. D. |
7. 难度:中等 | |
如图,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=25°,则∠CAD的度数为( ) A.25° B.50° C.65° D.75° |
8. 难度:中等 | |
不等式组的解在数轴上表示为( ) A. B. C. D. |
9. 难度:中等 | |||||||||||||
为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表:
A.25.5厘米,26厘米 B.26厘米,25.5厘米 C.25.5厘米,25.5厘米 D.26厘米,26厘米 |
10. 难度:中等 | |
如图,DE与△ABC的边AB,AC分别相交于D,E两点,且DE∥BC.若AD:BD=3:1,DE=6,则BC等于( ) A.8 B. C. D.2 |
11. 难度:中等 | |
小明在“百度”搜索引擎中输入“钓鱼岛最新消息”,能搜索到与之相关的结果个数约为5640000,这个数用科学记数法表示为 . |
12. 难度:中等 | |
已知反比例函数y=的图象在第二、四象限,则m的取值范围是 . |
13. 难度:中等 | |
方程x2-2x-1=0的两个实数根分别为x1,x2,则(x1-1)(x2-1)= . |
14. 难度:中等 | |
小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作一个底面半径为9cm,母线长为30cm的圆锥形生日礼帽,则这个圆锥形礼帽的侧面积为 cm2.(结果保留π) |
15. 难度:中等 | |
如图,小聪用一块有一个锐角为30°的直角三角板测量树高,已知小聪和树都与地面垂直,且相距3米,小聪身高AB为1.7米,则这棵树的高度= 米. |
16. 难度:中等 | |
如果函数,那么= . |
17. 难度:中等 | |
计算:. |
18. 难度:中等 | |
先化简,然后从中选取一个你认为合适的数作为x的值代入求值. |
19. 难度:中等 | |
如图,在平行四边形ABCD中,E为BC边上一点,且AB=AE. (1)求证:△ABC≌△EAD; (2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数. |
20. 难度:中等 | |
已知关于x的一元二次方程 (m+1)x2+2mx+m-3=0 有两个不相等的实数根. (1)求m的取值范围; (2)当m取满足条件的最小奇数时,求方程的根. |
21. 难度:中等 | |
如图,在边长均为1的小正方形网格纸中,△OAB的顶点O、A、B均在格点上,且O是直角坐标系的原点,点A在x轴上. (1)以O为位似中心,将△OAB放大,使得放大后的△OA1B1与△OAB对应线段的比为2:1,画出△OA1B1.(所画△OA1B1与△OAB在原点两侧); (2)求出线段A1B1所在直线的函数关系式. |
22. 难度:中等 | |
“校园手机”现象越来越受到社会的关注,小记者刘凯随机调查了某校若干学生和家长对中学生带手机现象的看法,制作了如下的统计图: (1)求这次调查的总人数,并补全图1; (2)求图2中表示家长“赞成”的圆心角的度数; (3)针对随机调查的情况,刘凯决定从初三一班表示赞成的4位家长中随机选择2位进行深入调查,其中包含小亮和小丁的家长,请你利用树状图或列表的方法,求出小亮和小丁的家长被同时选中的概率. |
23. 难度:中等 | |
珠海市某施工队负责修建1800米的绿道.为了尽量减少施工对周边环境的影响,该队提高了施工效率,实际工作效率是原计划的1.2倍,结果提前两天完成.求原计划平均每天修绿道的长度? |
24. 难度:中等 | |
如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD. (1)求证:CD是⊙O的切线; (2)过点B作⊙O的切线交CD的延长线于点E,若BC=6,tan∠CDA=,求BE的长. |
25. 难度:中等 | |
如图,抛物线y=mx2+2mx-3m(m≠0)的顶点为H,与x轴交于A、B两点(B点在A点右侧),点H、B关于直线l:对称,过点B作直线BK∥AH交直线l于K点. (1)求A、B两点坐标,并证明点A在直线l上; (2)求此抛物线的解析式; (3)将此抛物线向上平移,当抛物线经过K点时,设顶点为N,直接写出NK的长. |