1. 难度:中等 | |
-2的倒数是( ) A.2 B.-2 C. D. |
2. 难度:中等 | |
近年来,随着交通网络的不断完善,我市近郊游持续升温.据统计,在今年“五一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为( ) A.20.3×104人 B.2.03×105人 C.2.03×104人 D.2.03×103人 |
3. 难度:中等 | |
下列计算正确的是( ) A.x2•x=x3 B.x+x=x2 C.(x2)3=x5 D.x6÷x3=x2 |
4. 难度:中等 | |
下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( ) A.1个 B.2个 C.3个 D.4个 |
5. 难度:中等 | |
不等式组的解集在数轴上可表示为( ) A. B. C. D. |
6. 难度:中等 | |||||||||||||||||
“五一”黄金周期间,“天堂寨”风景区在7天假期中对每天上山旅游的人数统计如下表:
A.1.2,1.8 B.1.8,1.2 C.1.2,1.2 D.1.8,1.8 |
7. 难度:中等 | |
一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是( ) A.100元 B.105元 C.108元 D.118元 |
8. 难度:中等 | |
在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=( ) A.1:2 B.1:3 C.2:3 D.2:5 |
9. 难度:中等 | |
四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( ) A. B. C. D.1 |
10. 难度:中等 | |
如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB等于( ) A.30° B.45° C.55° D.60° |
11. 难度:中等 | |
小明从图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条信息:①c<0;②abc>0;③a-b+c>0;④2a-3b=0;⑤c-4b>0,你认为其中正确信息的个数有( ) A.2个 B.3个 C.4个 D.5个 |
12. 难度:中等 | |
如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,BC=2,O,H分别为边AB,AC的中点,将△ABC绕点B顺时针旋转120°到△A1BC1的位置,则整个旋转过程中线段OH所扫过部分的面积(即阴影部分面积)为( ) A. B. C.π D. |
13. 难度:中等 | |
分解因式:x-2xy+xy2= . |
14. 难度:中等 | |
函数中,自变量x的取值范围是 . |
15. 难度:中等 | |
如图,在梯形ABCD中,AB∥DC,∠ADC的平分线与∠BCD的平分线的交点E恰在AB上.若AD=7cm,BC=8cm,则AB的长度是 cm. |
16. 难度:中等 | |
如图,矩形纸片ABCD,点E是AB上一点,且BE:EA=5:3,EC=,把△BCE沿折痕EC向上翻折,若点B恰好落在AD边上,设这个点为F,若⊙O内切于以F、E、B、C为顶点的四边形,则⊙O的面积= . |
17. 难度:中等 | |
计算:|2-tan60°|-(π-3.14)+()-2+ |
18. 难度:中等 | |
先化简代数式:,再从你喜欢的数中选择一个恰当的作为x的值,代入求出代数式的值. |
19. 难度:中等 | |
学校为了解全校1600名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项.且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整). (1)问:在这次调查中,一共抽取了多少名学生? (2)补全频数分布直方图; (3)估计全校所有学生中有多少人乘坐公交车上学? |
20. 难度:中等 | |
如图,等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连接BE. (1)求证:△ACD≌△BCE; (2)延长BE至Q,P为BQ上一点,连接CP、CQ使CP=CQ=5,若BC=8时,求PQ的长. |
21. 难度:中等 | ||||||||||
我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼,有关成本、销售情况如下表:
(2)2011年,王大爷继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2010年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩? (3)已知甲鱼每亩需要饲料500㎏,桂鱼每亩需要饲料700㎏,根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每次装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需要全部饲料比原计划减少了2次,求王大爷原定的运输车辆每次可装载饲料多少㎏? |
22. 难度:中等 | |
如图,AB是⊙O的直径,CD是⊙O的切线,切点为C.延长AB交CD于点E.连接AC,作∠DAC=∠ACD,作AF⊥ED于点F,交⊙O于点G. (1)求证:AD是⊙O的切线; (2)如果⊙O的半径是6cm,EC=8cm,求GF的长. |
23. 难度:中等 | |
如图,抛物线y=x2-2x-3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为2. (1)求A,B两点的坐标及直线AC的函数表达式; (2)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求△ACE面积的最大值; (3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由. (4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由. |