1. 难度:中等 | |
-5的相反数是( ) A. B. C.5 D.-5 |
2. 难度:中等 | |
对角线互相平分且相等的四边形是( ) A.菱形 B.矩形 C.正方形 D.等腰梯形 |
3. 难度:中等 | |
下列计算正确的是( ) A.(-a3)2=-a6 B.(a-b)2=a2-b2 C.3a2+2a3=5a5 D.a6÷a3=a3 |
4. 难度:中等 | |
要调查某校九年级550名学生周日的睡眠时间,下列调查对象选取最合适的是( ) A.选取该校一个班级的学生 B.选取该校50名男生 C.选取该校50名女生 D.随机选取该校50名九年级学生 |
5. 难度:中等 | |
如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于( ) A.8 B.4 C.10 D.5 |
6. 难度:中等 | |
已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是( ) A.a>0 B.当x>1时,y随x的增大而增大 C.c<0 D.3是方程ax2+bx+c=0的一个根 |
7. 难度:中等 | |
如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是( ) A.①② B.②③ C.②④ D.③④ |
8. 难度:中等 | |
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则正比例函数y=(b+c)x的图象与反比例函数y=的图象在同一坐标系中大致是( ) A. B. C. D. |
9. 难度:中等 | |
函数y=中,自变量x的取值范围是 . |
10. 难度:中等 | |
分解因式:(a+b)3-4(a+b)= . |
11. 难度:中等 | |
2011年4月28日,国家统计局公布了第六次全国人口普查结果,总人口为1339000000人,将1339000000保留三个有效数字用科学记数法表示为 . |
12. 难度:中等 | |
在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到黄球的概率是,则n= . |
13. 难度:中等 | |
要反映一天内气温的变化情况,宜采用 统计图.(扇形、条形、折线中选一个填入) |
14. 难度:中等 | |
如图,梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,作DE∥AB交BC于点E,若AD=3,BC=10,则CD的长是 . |
15. 难度:中等 | |
将一个圆心角是90°的扇形围成一个圆锥的侧面,则该圆锥的侧面积S侧和底面积S底的关系是 . |
16. 难度:中等 | |
如果线段CD是由线段AB平移得到的,且点A(-1,3)的对应点为C(2,5),那么点B(-3,-1)的对应点D的坐标是 . |
17. 难度:中等 | |
如图,已知抛物线y=x2+bx+c经过点(0,-3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是 . |
18. 难度:中等 | |
如图,直线l的解析式为,⊙O是以坐标原点为圆心,半径为1的圆,点P在x轴上运动,过点P且与直线l平行(或重合)的直线与⊙O有公共点,则点P的横坐标为整数的点的个数有 个. |
19. 难度:中等 | |
计算:. |
20. 难度:中等 | |
化简:. |
21. 难度:中等 | |
解方程:3x2-4x-1=0. |
22. 难度:中等 | |
如图,在一个10×10的正方形DEFG网格中有一个△ABC. ①在网格中画出△ABC向下平移3个单位得到的△A1B1C1; ②在网格中画出△ABC绕C点逆时针方向旋转90°得到的△A2B2C; ③若以EF所在的直线为x轴,ED所在的直线为y轴建立直角坐标系,写出A1、A2两点的坐标. |
23. 难度:中等 | ||||||||||||||||
某单位面向内部职工招聘高级管理人员一名.经初选、复选后,共有甲、乙、丙三名候选人进入最后的决赛.现对甲、乙、丙三人进行了笔试和面试两项测试,三人的测试成绩如下表所示:
(1)甲的民主评议得分为______分.(直接写出结果) (2)若根据笔试成绩、面试成绩、民主评议得分三项的平均成绩确定个人成绩,那么谁将被录用? (3)根据实际需要,该单位将笔试、面试、民主评议三项得分按5:3:2的比例确定个人成绩,那么谁将被录用? |
24. 难度:中等 | |
如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF. (1)线段BD与CD有什么数量关系,并说明理由; (2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由. |
25. 难度:中等 | |
如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少? |
26. 难度:中等 | |
姚明将带队来我市体育馆进行表演比赛,市体育局在策划本次活动,在与单位协商团购票时推出两种方案.设购买门票数为x(张),总费用为y(元). 方案一:若单位赞助广告费8000元,则该单位所购门票的价格为每张50元;(总费用=广告赞助费+门票费) 方案二:直接购买门票方式如图所示. 解答下列问题: (1)方案一中,y与x的函数关系式为______; 方案二中,当0≤x≤100时,y与x的函数关系式为______, 当x>100时,y与x的函数关系式为______; (2)如果购买本场篮球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由; (3)甲、乙两单位分别采用方案一、方案二购买本场篮球赛门票共700张,花去总费用计56000元,求甲、乙两单位各购买门票多少张. |
27. 难度:中等 | |
如图,已知点A的坐标为(2,4),在点A处有二只蚂蚁(忽略其大小),它们同时出发,一只以每秒1个单位的速度垂直向上爬行,另一只同样以每秒1个单位的速度水平向右爬行,t秒后,它们分别到达B、C处,连接BC.若在x轴上有两点D、E,满足DB=OB,EC=OC,则 (1)当t=1秒时,求BC的长度; (2)证明:无论t为何值,DE=2AC始终成立; (3)延长BC交x轴于点F,当t的取值范围是多少时,点F始终在点E的左侧?(请直接写出结果,无需书写解答过程!) |
28. 难度:中等 | |
如图,⊙O的半径为1,等腰直角三角形ABC的顶点B的坐标为(,0),∠CAB=90°,AC=AB,顶点A在⊙O上运动. (1)当点A在x轴上时,求点C的坐标; (2)当点A运动到x轴的负半轴上时,试判断直线BC与⊙O位置关系,并说明理由; (3)设点A的横坐标为x,△ABC的面积为S,求S与x之间的函数关系式,并求出S的最大值与最小值; (4)当直线AB与⊙O相切时,求AB所在直线对应的函数关系式. |
29. 难度:中等 | |
如图1,抛物线y=mx2-11mx+24m (m<0)与x轴交于B、C两点(点B在点C的左侧),抛物线另有一点A在第一象限内,且∠BAC=90°. (1)填空:OB=______,OC=______; (2)连接OA,将△OAC沿x轴翻折后得△ODC,当四边形OACD是菱形时,求此时抛物线的解析式; (3)如图2,设垂直于x轴的直线l:x=n与(2)中所求的抛物线交于点M,与CD交于点N,若直线l沿x轴方向左右平移,且交点M始终位于抛物线上A、C两点之间时,试探究:当n为何值时,四边形AMCN的面积取得最大值,并求出这个最大值. |