1. 难度:中等 | |
可化简为( ) A.3.2-π B.π-3.2 C.π+3.2 D.-π-3.2 |
2. 难度:中等 | |
下列计算正确的是( ) A.a+2a=3a2 B.a2•a3=a5 C.a3÷a=3 D.(-a)3=a3 |
3. 难度:中等 | |
下列一元二次方程两实数根和为-4的是( ) A.x2+2x-4=0 B.x2-4x+4=0 C.x2+4x+10=0 D.x2+4x-5=0 |
4. 难度:中等 | |
如图,所给图形中是中心对称图形但不是轴对称图形的是( ) A. B. C. D. |
5. 难度:中等 | |
如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由6个立方体叠成的几何体,从正前方观察,可画出的平面图形是( ) A. B. C. D. |
6. 难度:中等 | |
如图,现有一扇形纸片,圆心角∠AOB为120°,弦AB的长为2cm,用它围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为( ) A.cm B.πcm C.cm D.πcm |
7. 难度:中等 | |
平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n个点最多可确定21条直线.则n的值为( ) A.5 B.6 C.7 D.8 |
8. 难度:中等 | |
如图,两个反比例函数和的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则三角形PAB的面积为( ) A.3 B.4 C. D.5 |
9. 难度:中等 | |
已知梯形ABCD的四个顶点的坐标分別为A(-1,0),B(5,0),C(2,2),D(0,2),直线y=kx+2将梯形分成面积相等的两部分,则k的值为( ) A. B. C. D. |
10. 难度:中等 | |
如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h1.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h2,则下列结论正确的是( ) A.h2=2h1 B.h2=1.5h1 C.h2=h1 D.h2=h1 |
11. 难度:中等 | |
二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx-ac与反比例函数在同一坐标系内的图象大致为( ) A. B. C. D. |
12. 难度:中等 | |
如图,△ABC是边长为10的等边三角形,以AC为直径作⊙O,D是BC上一点,BD=2,以点B为圆心,BD为半径的⊙B与⊙O的位置关系为( ) A.相交 B.外离 C.外切 D.内切 |
13. 难度:中等 | |
已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC= cm. |
14. 难度:中等 | |
已知α,β是关于x的一元二次方程(m-1)x2-x+1=0两个实根,且满足(α+1)(β+1)=m+1,则m的值为 . |
15. 难度:中等 | |
如图所示的圆面图案是用相同半径的圆与圆弧构成的.若向圆面投掷飞镖,则飞镖落在黑色区域的概率为 . |
16. 难度:中等 | |
若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是 . |
17. 难度:中等 | |
将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义=ad-bc,上述记号就叫做2阶行列式.若,则x= . |
18. 难度:中等 | |
如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论: ①S1+S2=S3+S4;②S2+S4=S1+S3;③若S3=2S1,则S4=2S2;④若S1=S2,则P点在矩形的对角线上. 其中正确的结论的序号是 (把所有正确结论的序号都填在横线上). |
19. 难度:中等 | |
先化简,后求值:,其中. |
20. 难度:中等 | |
某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人? |
21. 难度:中等 | |
如图,某货船以20海里/时的速度将一批重要物资由A处运往正西方向的B处,经16小时的航行到达,到达后必须立即卸货.此时,接到气象部门通知,一台风中心正以40海里/时的速度由A向北偏西60°方向移动,距台风中心200海里的圆形区域(包括边界)均会受到影响. (1)问:B处是否会受到台风的影响?请说明理由. (2)为避免受到台风的影响,该船应在多少小时内卸完货物? (供选用数据:≈1.4,≈1.7) |
22. 难度:中等 | |
已知:在⊙O中,AB是直径,AC是弦,OE⊥AC于点E,过点C作直线FC,使∠FCA=∠AOE,交AB的延长线于点D. (1)求证:FD是⊙O的切线; (2)设OC与BE相交于点G,若OG=2,求⊙O半径的长; (3)在(2)的条件下,当OE=3时,求图中阴影部分的面积. |
23. 难度:中等 | ||||||||||
现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨. (1)设A地到甲地运送蔬菜x吨,请完成下表:
(3)怎样调运蔬菜才能使运费最少? |
24. 难度:中等 | |
如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,连接AE、AC和BE相交于点O. (1)判断四边形ABCE是怎样的四边形,说明理由; (2)如图2,P是线段BC上一动点(图2),(不与点B、C重合),连接PO并延长交线段AE于点Q,QR⊥BD,垂足为点R.四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积. |
25. 难度:中等 | |
如图,四边形ABCO是平行四边形,AB=4,OB=2,抛物线过A、B、C三点,与x轴交于另一点D.一动点P以每秒1个单位长度的速度从B点出发沿BA向点A运动,运动到A停止,同时一动点Q从点D出发,以每秒3个单位长度的速度沿DC向点C运动,与点P同时停止. (1)求抛物线的解析式; (2)若抛物线的对称轴与AB交于点E,与x轴交于点F,当点P运动时间t为何值时,四边形POQE是等腰梯形? (3)当t为何值时,以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似? |