1. 难度:中等 | |
3的相反数是( ) A.-3 B.- C. D.3 |
2. 难度:中等 | |
下列运算中正确的是( ) A.3a+2a=5a2 B.(a-b)2=a2-b2 C.2a2•a3=2a6 D.a10÷a4=a6 |
3. 难度:中等 | |
若关于x的方程x2+mx+1=0有两个不相等的实数根,则m的值可以是( ) A.0 B.-1 C.2 D.-3 |
4. 难度:中等 | |
要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是( ) A.调查全体女生 B.调查全体男生 C.调查九年级全体学生 D.调查七、八、九年级各50名学生 |
5. 难度:中等 | |
如图是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是( ) A.内含 B.相交 C.相切 D.外离 |
6. 难度:中等 | |
顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( ) A.矩形 B.直角梯形 C.菱形 D.正方形 |
7. 难度:中等 | |
已知点A(2,3)在反比例函数的图象上,则k的值是( ) A.-7 B.7 C.-5 D.5 |
8. 难度:中等 | |
如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于( ) A. B. C. D. |
9. 难度:中等 | |
如图,在长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C个数是( ) A.2 B.3 C.4 D.5 |
10. 难度:中等 | |
如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于( ) A. B. C.3 D.4 |
11. 难度:中等 | |
函数中,自变量x的取值范围是 . |
12. 难度:中等 | |
因式分【解析】 a2-9= . |
13. 难度:中等 | |
已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为 . |
14. 难度:中等 | |
一组数据3,4,5,5,8的极差是 . |
15. 难度:中等 | |
如图,四边形ABCD为菱形,已知A(-3,0),B(2,0),则点C的坐标为 . |
16. 难度:中等 | |
对任意两实数a、b,定义运算“*”如下:.根据这个规则,则方程2*x=9的解为 . |
17. 难度:中等 | |
如图,点A在函数y=x(x≥0)图象上,且OA=,如果将函数y=x2的图象沿射线OA方向平移个单位长度,那么平移后的图象的函数关系式为 . |
18. 难度:中等 | |
如图,以点P(2,0)为圆心,为半径作圆,点M(a,b)是⊙P上的一点,则的最大值是 . |
19. 难度:中等 | |
计算:(1) (2). |
20. 难度:中等 | |
(1)解不等式组: (2)解方程. |
21. 难度:中等 | |
已知:如图,点E,C在线段BF上,AB=DE,AB∥DE,BE=CF.求证:AC=DF. |
22. 难度:中等 | |
2010年4月14日,青海玉树发生了7.1级地震.我市某中学展开了“情系玉树,大爱无疆”爱心捐款活动.团干部小华对九(1)班的捐款情况进行了统计,并把统计的结果制作了一个不安全的频数分布直方图和扇形统计图(如图).已知学生捐款最少的是5元,最多的不足25元. (1)请补全频数分布直方图; (2)九(1)班学生捐款的中位数所在的组别范围是______; (3)九(1)班学生小明同学捐款24元,班主任拟在捐款最多的20-25元这组同学中随机选取一人代表班级在学校组织的献爱心活动大会上发言,小明同学被选中的概率是______. |
23. 难度:中等 | |
如图所示的转盘,分成三个相同的扇形,指针位置固定转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,当作指向右边的扇形). (1)求事件“转动一次,得到的数恰好是0”发生的概率; (2)写出此情景下一个不可能发生的事件. (3)用树状图或列表法,求事件“转动两次,第一次得到的数与第二次得到的数绝对值相等”发生的概率. |
24. 难度:中等 | |
请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复) |
25. 难度:中等 | |||||||
春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如表:
(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额-日捕捞成本) (3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少? |
26. 难度:中等 | |
两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1.固定△ABC不动,将△DEF进行如下操作: (1)如图,△DEF沿线段AB向右平移(即D点在线段AB内移动),连接DC、CF、FB,四边形CDBF的形状在不断的变化,但它的面积不变化,请求出其面积. (2)如图,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由. (3)如图,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连接AE,请你求出sinα的值. |
27. 难度:中等 | |
某种规格小纸杯的侧面是由一半径为18cm、圆心角是60°的扇形OAB剪去一半径12cm的同心圆扇形OCD所围成的(不计接缝)(如图1). (1)求纸杯的底面半径和侧面积(结果保留π) (2)要制作这样的纸杯侧面,如果按照图2所示的方式剪裁(不允许有拼接),至少要用多大的矩形纸片? (3)如图3,若在一张半径为18cm的圆形纸片上剪裁这样的纸杯侧面,最多能裁出多少个? |
28. 难度:中等 | |
巳知二次函数y=a(x2-6x+8)(a>0)的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点. (1)如图①.连接AC,将△OAC沿直线AC翻折,若点O的对应点0'恰好落在该抛物线的 对称轴上,求实数a的值; (2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于边EF的 右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等 (即这四条线段不能构成平行四边形).“若点P是边EF或边FG上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程; (3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等 (即这四条线段能构成平行四边形)?请说明理由. |