1. 难度:中等 | |
下列各式:①-(-2);②-|-2|;③-22;④-(-2)2,计算结果为负数的个数有( ) A.4个 B.3个 C.2个 D.1个 |
2. 难度:中等 | |
下列计算正确的是( ) A.a2+a2=a4 B.a5•a2=a7 C.(a2)3=a5 D.2a2-a2=2 |
3. 难度:中等 | |
下列标志中,既是轴对称图形又是中心对称图形的为( ) A. B. C. D. |
4. 难度:中等 | |
已知是方程2x-ay=3的一个解,那么a的值是( ) A.1 B.3 C.-3 D.-1 |
5. 难度:中等 | |
在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,在随机摸出一个球,两次都摸到黑球的概率是( ) A. B. C. D. |
6. 难度:中等 | |
将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为( ) A.10cm B.30cm C.45cm D.300cm |
7. 难度:中等 | |
二次函数y1=ax2-x+1的图象与y2=-2x2图象的形状,开口方向相同,只是位置不同,则二次函数y1的顶点坐标是( ) A.(-,-) B.(-,) C.(,) D.(,-) |
8. 难度:中等 | |
当k>0,b<0时,y=kx+b的图象经过( ) A.第1、2、3象限 B.第2、3、4象限 C.第1、2、4象限 D.第1、3、4象限 |
9. 难度:中等 | |
如图,PA切⊙O于点A,直线PBC经过点圆心O,若∠P=30°,则∠ACB的度数为( ) A.30° B.60° C.90° D.120° |
10. 难度:中等 | |
对角线相等且互相垂直平分的四边形是( ) A.矩形 B.菱形 C.正方形 D.等腰梯形 |
11. 难度:中等 | |
某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为( ) A.-=20 B.-=20 C.-=0.5 D.-=0.5 |
12. 难度:中等 | |
在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论: ①△ACD≌△ACE;②△CDE为等边三角形;③=2;④. 其中结论正确的是( ) A.只有①② B.只有①②④ C.只有③④ D.①②③④ |
13. 难度:中等 | |
分解因式:a3-2a2+a= . |
14. 难度:中等 | |
关于x的一元二次方程(m-1)x2+2x+1=0有两个不相等的实数根,那么m的取值范围是 . |
15. 难度:中等 | |
如图所示的一只玻璃杯,最高为8cm,将一根筷子插入其中,杯外最长4厘米,最短2厘米,那么这只玻璃杯的内径是 厘米. |
16. 难度:中等 | |
不等式组的整数解共有 个. |
17. 难度:中等 | |
如图,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC边中点E处,点A落在点F处,折痕为MN,则线段CN的长度为 . |
18. 难度:中等 | |
解方程:. |
19. 难度:中等 | |
如图,在△ABC中,BC>AC,点D在BC上,且DC=AC. (1)利用直尺与圆规先作∠ACB的平分线,交AD于F点,再作线段AB的垂直平分线,交AB于点E,最后连接EF. (2)若线段BD的长为6,求线段EF的长. |
20. 难度:中等 | |
为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题: (1)在这次调查中共调查了多少名学生? (2)求户外活动时间为1.5小时的人数,并补充频数分布直方图; (3)求表示户外活动时间1小时的扇形圆心角的度数; (4)本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少? |
21. 难度:中等 | |
如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB. (1)求证:PC是⊙O的切线; (2)求证:BC=AB. |
22. 难度:中等 | |||||||||
某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话. 小丽:如果以10元/千克的价格销售,那么每天可售出300千克. 小强:如果每千克的利润为3元,那么每天可售出250千克. 小红:如果以13元/千克的价格销售,那么每天可获取利润750元. 【利润=(销售价-进价)×销售量】 (1)请根据他们的对话填写下表:
(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元? |
23. 难度:中等 | |
阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ABP+S△ACP=S△ABC,即:AB•r1+AC•r2=AB•h,∴r1+r2=h (1)理解与应用 如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在 三角形内任一点”,即:已知边长为2的等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,试证明:. (2)类比与推理 边长为2的正方形内任意一点到各边的距离的和等于______; (3)拓展与延伸 若边长为2的正n边形A1A2…An内部任意一点P到各边的距离为r1,r2,…rn,请问r1+r2+…rn是否为定值(用含n的式子表示),如果是,请合理猜测出这个定值. |
24. 难度:中等 | |
如图,已知抛物线y=x2+bx+c与坐标轴交于A、B、C三点,A点的坐标为(-1,0),过点C的直线y=x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1. (1)填空:点C的坐标是______,b=______,c=______; (2)求线段QH的长(用含t的式子表示); (3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由. |