1. 难度:中等 | |
下列各数中,最小的实数是( ) A.-3 B.-1 C.0 D. |
2. 难度:中等 | |
要使二次根式有意义,则x应满足( ) A.x>2 B.x≥2 C.x≥-2 D.x≠2 |
3. 难度:中等 | |
某反比例函数的图象经过点(-2,3),则此函数图象也经过点( ) A.(2,-3) B.(-3,-3) C.(2,3) D.(-4,6) |
4. 难度:中等 | |
为了支援青海玉树灾区学生,“爱心小组”的七位同学为灾区捐款,捐款金额分别为60,75,60,75,120,60,90(单位:元).那么这组数据的众数是( ) A.60元 B.75元 C.90元 D.120元 |
5. 难度:中等 | |
已知⊙O1、⊙O2的半径分别是r1=2、r2=4,若两圆相交,则圆心距O1O2可能取的值是( ) A.2 B.4 C.6 D.8 |
6. 难度:中等 | |
二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 |
7. 难度:中等 | |
由6个大小相同的正方体搭成的几何体,被小颖拿掉2个后,得到如图1所示的几何体,图2是原几何体的三视图.请你判断小颖拿掉的两个正方体原来放在( ) A.1号的前后 B.2号的前后 C.3号的前后 D.4号的左右 |
8. 难度:中等 | |
如图,一个小球从A点沿制定的轨道下落,在每个交叉口都有向左或向右两种机会均相等的结果,那么,小球最终到达H点的概率是( ) A. B. C. D. |
9. 难度:中等 | |
如图,AB是⊙O的直径,CD是⊙O的切线,C为切点,∠B=25°,则∠D等于( ) A.25° B.50° C.30° D.40° |
10. 难度:中等 | |
如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别是边AB、AC上,将△ABC沿着DE重叠压平,A与A'重合,若∠A=70°,则∠1+∠2=( ) A.140° B.130° C.110° D.70° |
11. 难度:中等 | |
分解因式:x2-9= . |
12. 难度:中等 | |
若分式与1互为相反数,则x的值是 . |
13. 难度:中等 | |
如图,已知AB⊥BD,ED⊥BD,C是线段BD的中点,且AC⊥CE,ED=1,BD=4,那么AB= . |
14. 难度:中等 | |
一个滑轮起重装置如图所示,滑轮的半径是10cm,当重物上升10cm时,滑轮的一条半径OA绕轴心O按逆时针方向旋转的角度约为 度.(假设绳索与滑轮之间没有滑动,π取3.14,结果精确到1°) |
15. 难度:中等 | |
已知一次函数y=kx+b的图象交y轴于正半轴,且y随x的增大而减小,请写出符合上述条件的一个解析式: . |
16. 难度:中等 | |
以边长为2cm的正三角形的高为边长作第二个正三角形,以第二个正三角形的高为边长作第三个正三角形,以此类推,则第十个正三角形的边长是 cm. |
17. 难度:中等 | |
计算: |
18. 难度:中等 | |
解分式方程:. |
19. 难度:中等 | |
如图所示,正方形ABCD中,E是CD上一点,F在CB的延长线上,且DE=BF. (1)求证:△ADE≌△ABF; (2)问:将△ADE顺时针旋转多少度后与△ABF重合,旋转中心是什么? |
20. 难度:中等 | |
从省家电下乡联席办获悉,自2009年2月20日我省家电下乡全面启动以来,最受农户热捧的四种家电是冰箱、彩电、洗衣机和空调,其销售量比为5:4:2:1,其中空调已销售了15万台.根据上述销售情况绘制了两个不完整的统计图: 请根据以上信息解答问题: (1)补全条形统计图; (2)四种家电销售总量为______万台; (3)为跟踪调查农户对这四种家电的使用情况,从已销售的家电中随机抽取一台家电,求抽到冰箱的概率. |
21. 难度:中等 | |
如图所示,小杨在广场上的A处正面观测一座楼房墙上的广告屏幕,测得屏幕下端D处的仰角为30°,然后他正对大楼方向前进5m到达B处,又测得该屏幕上端C处的仰角为45°.若该楼高为26.65m,小杨的眼睛离地面1.65m,广告屏幕的上端与楼房的顶端平齐.求广告屏幕上端与下端之间的距离.(≈1.732,结果精确到0.1m) |
22. 难度:中等 | |
某商店购进一种商品,单价30元.试销中发现这种商品每天的销售量p(件)与每件的销售价x(元)满足关系:p=100-2x.若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件? |
23. 难度:中等 | |
如图,BD为⊙O的直径,点A是弧BC的中点,AD交BC于E点,AE=2,ED=4. (1)求证:△ABE∽△ABD; (2)求tan∠ADB的值. |
24. 难度:中等 | |
如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=+bx+c经过B点,且顶点在直线x=上. (1)求抛物线对应的函数关系式; (2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由; (3)在(2)的前提下,若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为l.求l与t之间的函数关系式,并求l取最大值时,点M的坐标. |