1. 难度:中等 | |
2的算术平方根是( ) A.4 B.±4 C. D. |
2. 难度:中等 | |
在△ABC中,∠C=90°,若cosB=,则sinA的值为( ) A. B. C. D. |
3. 难度:中等 | |
2007年,某市热力发电约97950000千瓦,用科学记数法表示这个数可记为( ) A.9.795×108千瓦 B.9.795×107千瓦 C.97.95×106千瓦 D.9795×104千瓦 |
4. 难度:中等 | |
如图,是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形可能是下面四个立体图形中的( ) A.①② B.②③ C.②③④ D.①②④ |
5. 难度:中等 | |
若A(a1,b1),B(a2,b2)是反比例函数图象上的两个点,且a1<a2,则b1与b2的大小关系是( ) A.b1<b2 B.b1=b2 C.b1>b2 D.大小不确定 |
6. 难度:中等 | |
如图,已知AB=AC,∠A=36°,AB的中垂线MD交AC于点D、交AB于点M.下列结论: ①BD是∠ABC的平分线; ②△BCD是等腰三角形; ③△ABC∽△BCD; ④△AMD≌△BCD. 正确的有( )个. A.4 B.3 C.2 D.1 |
7. 难度:中等 | |
一次函数y=ax+1-a的图象如图所示,则|a-1|+的值为( ) A.-1 B.1 C.1-2a D.2a-1 |
8. 难度:中等 | |
用边长相等的正多边形进行平面镶嵌,下列正多边形能和正五边形密铺的是( ) A.正三角形 B.正六边形 C.正八边形 D.正十边形 |
9. 难度:中等 | |
下列命题: ①若a>b,则a-c>b-c; ②若|x|+|y|=0,则x+y=0; ③对角线下午相等的四边形是矩形; ④四条边相等的四边形是菱形. 其中原命题是真命题,逆命题也是真命题的有( ) A.1个 B.2个 C.3个 D.4个 |
10. 难度:中等 | |
如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,下列结论:①∠BAE=30°,②△ABE∽△AEF,③AE⊥EF,④△ADF∽△ECF.其中正确的个数为( ) A.1 B.2 C.3 D.4 |
11. 难度:中等 | |
抛物线y=ax2+bx+c的部分图象如图所示,则下列结论: ①abc>0;②3a+c=0;③当y>0时,-3<x<1;④b2>4ac;⑤当y=3时,x只能等于0. 其中正确结论的个数为( ) A.2个 B.3个 C.4个 D.5个 |
12. 难度:中等 | |
从-1,1,2这三个数中,任取两个不同的数作为一次函数y=kx+b的系数k,b,则一次函数y=kx+b的图象不经过第四象限的概率是( ) A. B. C. D. |
13. 难度:中等 | |
用含30°角的两块同样大小的直角三角板拼图形,下列四种图形:①平行四边形;②菱形;③矩形;④直角梯形.其中可以拼成的图形是 (只填序号) |
14. 难度:中等 | |
化简分式得 . |
15. 难度:中等 | |
如图所示的抛物线是二次函数y=(m-2)x2-3x+m2+m-6的图象,那么m的值是 . |
16. 难度:中等 | |
如图,已知在⊙O中,AB=,AC是⊙O的直径,AC⊥BD于E,∠A=30°,则图中阴影部分的面积为 . |
17. 难度:中等 | |
如图,已知矩形ABCD中,AB=,BC=,如果将该矩形沿对角线折叠,使点C落在点F处,那么图中阴影部分的面积是 . |
18. 难度:中等 | |
如图,⊙C经过原点且与两坐标轴分别交于点A与点B,点A的坐标为(0,4),M是圆上一点,∠BMO=120°,圆心C的坐标是 . |
19. 难度:中等 | |||||||||||||||||||
某区七年级有3000名学生参加“安全伴我行知识竞赛”活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了200名学生的得分进行统计:
(1)补全频率分布表和频数分布直方图; (2)若将得分转化为等级,规定得分低于59.5分评为D,59.5-69.5分评为C,69.5-89.5分评为B,89.5-100.5分评为A.这次全区七年级参加竞赛的学生约有多少人参赛成绩被评为D?如果随机抽查一名参赛学生的成绩等级,则这名学生的成绩被评为A、B、C、D哪一个等级的可能性大?请说明理由. (3)根据图、表信息,请你再提出一个问题并解答. |
20. 难度:中等 | |||||||||||||||
小明和小刚两位同学在学习“概率”时,做抛骰子试验,他们共抛了54次,出现向上点数的次数如下表:
(2)小明说:“根据试验,一次试验中出现向上点数为5的概率最大” 小刚说:“如果抛540次,那么出现向上点数为6的次数正好是100次.”请判断小明和小刚说法的对错. (3)小明和小刚用骰子做游戏,每人各抛一次,如果出现向上点数之和为3的倍数,小明得3分,如果和不是3的倍数小刚得1分.用树状图工列表的方法,说明这个游戏是否公平,若不公平,请修改得分标准,使游戏公平. |
21. 难度:中等 | |
如图,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上.该货船航行30分钟后到达B处,此时再测得该岛在北偏东30°的方向上,已知在C岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由. |
22. 难度:中等 | |
晓跃汽车销售公司到某汽车制造厂选购A、B两种型号的轿车,用300万元可购进A型轿车10辆,B型轿车15辆;用300万元也可以购进A型轿车8辆,B型轿车18辆. (1)求A、B两种型号的轿车每辆分别为多少元? (2)若该汽车销售公司销售1辆A型轿车可获利8000元,销售1辆B型轿车可获利5000元,该汽车销售公司准备用不超过400万元购进A、B两种型号轿车共30辆,且这两种轿车全部售出后总获利不低于20.4万元,问有几种购车方案?在这几种购车方案中,该汽车销售公司将这些轿车全部售出后,分别获利多少万元? |
23. 难度:中等 | |
已知抛物线y=ax2+bx+c(a≠0)与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴的正半轴交于点C.如果x1、x2是方程x2-x-6=0的两个根(x1<x2),且△ABC的面积为. (1)求此抛物线的解析式; (2)求直线AC和BC的方程; (3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作直线y=m(m为常数),与直线BC交于点Q,则在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由. |