1. 难度:中等 | |
下列计算错误的是( ) A.-(-2)=2 B. C.2x2+3x2=5x2 D.(a2)3=a5 |
2. 难度:中等 | |
下列因式分解正确的是( ) A.x3-x=x(x2-1) B.x2+3x+2=x(x+3)+2 C.x2-y2=(x-y)2 D.x2+2x+1=(x+1)2 |
3. 难度:中等 | |
将如图所示的两个平面图形绕轴旋转一周,对其所得的立体图形,下列说法正确的是( ) A.主视图相同 B.左视图相同 C.俯视图相同 D.三种视图都不相同 |
4. 难度:中等 | |
如图,A(1,0)、B(7,0),⊙A、⊙B的半径分别为1和2,将⊙A沿x轴向右平移3个单位,则此时该圆与⊙B的位置关系是( ) A.外切 B.相交 C.内含 D.外离 |
5. 难度:中等 | |
如图,∠AOB=100°,点C在⊙O上,且点C不与A、B重合,则∠ACB的度数为( ) A.50° B.80°或50° C.130° D.50°或130° |
6. 难度:中等 | |
下列图形中,既是轴对称图形又是中心对称图形的有( )个. A.1 B.2 C.3 D.4 |
7. 难度:中等 | |
关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1-x1x2+x2=1-a,则a的值是( ) A.1 B.-1 C.1或-1 D.2 |
8. 难度:中等 | |
如图,在圆锥形的稻草堆顶点P处有一只猫,看到底面圆周上的点A处有一只老鼠,猫沿着母线PA下去抓老鼠,猫到达点A时,老鼠已沿着底面圆周逃跑,猫在后面沿着相同的路线追,在圆周的点B处抓到了老鼠后沿母线BP回到顶点P处.在这个过程中,假设猫的速度是匀速的,猫出发后与点P距离s,所用时间为t,则s与t之间的函数关系图象是( ) A. B. C. D. |
9. 难度:中等 | |
“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,市某中学八年级三班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据如图提供的信息,捐款金额的众数和中位数分别是( ) A.20,20 B.30,20 C.30,30 D.20,30 |
10. 难度:中等 | |
如图,在△ABC中,AB=AC=13,BC=10,点D为BC中点,DE⊥AB,垂足为点E,则DE等于( ) A. B. C. D. |
11. 难度:中等 | |
如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为( ) A.2cm B.cm C. D. |
12. 难度:中等 | |
“标准对数视力表”对我们来说并不陌生,如图是视力表的一部分,其中最上面较大的“E”与下面四个较小“E”中的哪一个是位似图形( ) A.左上 B.左下 C.右上 D.右下 |
13. 难度:中等 | |
2013年初甲型H7N9流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H7N9流感球形病毒细胞的直径约为0.00000156m,则它的半径用科学记数法表示 m. |
14. 难度:中等 | |
计算:|-2|+(+1)-()-1+tan60°= . |
15. 难度:中等 | |
将二次函数y=-x2+2x+2的图象先向下平移3个单位长度,再向左平移1个单位长度得到的图象的解析式为 . |
16. 难度:中等 | |
如图,▱ABCD中,E、F分别为AD、BC上的点,且DE=2AE,BF=2FC,连接BE、AF交于点H,连接DF、CE交于点G,则= . |
17. 难度:中等 | |
边长为2的两种正方形卡片如图①所示,卡片中的扇形半径均为2.图②是交替摆放A、B两种卡片得到的图案.若摆放这个图案共用两种卡片21张,则这个图案中阴影部分图形的面积和为 (结果保留π). |
18. 难度:中等 | |
先化简,再求值:,其中x所取的值是在-2<x≤3内的一个整数. |
19. 难度:中等 | |
九年级某班组织班团活动,班委会准备买一些奖品.班长王倩拿15元钱去商店全部用来购买钢笔和笔记本两种奖品,已知钢笔2元/支,笔记本1元/本,且每样东西至少买一件. (1)有多少种购买方案?请列举所有可能的结果; (2)从上述方案中任选一种方案购买,求买到的钢笔与笔记本数量相等的概率. |
20. 难度:中等 | |
已知反比例函数的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,-2), (1)求这两个函数的关系式; (2)观察图象,写出使得y1>y2成立的自变量x的取值范围. |
21. 难度:中等 | |
莱芜盛产生姜,去年某生产合作社共收获生姜200吨,计划采用批发和零售两种方式销售.经市场调查,批发每天售出6吨. (1)受天气、场地等各种因素的影响,需要提前完成销售任务.在平均每天批发量不变的情况下,实际平均每天的零售量比原计划增加了2吨,结果提前5天完成销售任务.那么原计划零售平均每天售出多少吨? (2)在(1)的条件下,若批发每吨获得利润为2000元,零售每吨获得利润为2200元,计算实际获得的总利润. |
22. 难度:中等 | |
如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E. (1)求点B的坐标; (2)求证:四边形ABCE是平行四边形; (3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长. |
23. 难度:中等 | |
如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D. (1)求证:AC平分∠DAB; (2)过点O作线段AC的垂线OE,垂足为E(要求:尺规作图,保留作图痕迹,不写作法); (3)若CD=4,AC=4,求垂线段OE的长. |
24. 难度:中等 | |
已知两直线l1,l2分别经过点A(1,0),点B(-3,0),并且当两直线同时相交于y正半轴的点C时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与直线l1交于点K,如图所示. (1)求点C的坐标,并求出抛物线的函数解析式; (2)抛物线的对称轴被直线l1,抛物线,直线l2和x轴依次截得三条线段,问这三条线段有何数量关系?请说明理由; (3)当直线l2绕点C旋转时,与抛物线的另一个交点为M,请找出使△MCK为等腰三角形的点M,简述理由,并写出点M的坐标. |