1. 难度:中等 | |
-2的绝对值是( ) A.2 B.-2 C. D. |
2. 难度:中等 | |
拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学记数法表示为( ) A.0.5×1011千克 B.50×109千克 C.5×109千克 D.5×1010千克 |
3. 难度:中等 | |
如图,已知AB∥CD,∠2=135°,则∠1的度数是( ) A.35° B.45° C.55° D.65° |
4. 难度:中等 | |
下列运算正确的是( ) A.x2+x3=x5 B.(x-2)2=x2-4 C.2x2•x3=2x5 D.(x3)4=x7 |
5. 难度:中等 | |
计算的结果是( ) A. B. C. D. |
6. 难度:中等 | |
化简的结果是( ) A. B. C. D. |
7. 难度:中等 | |
如图是一个几何体的三视图,则这个几何体的侧面积是( ) A.12πcm2 B.8πcm2 C.6πcm2 D.3πcm2 |
8. 难度:中等 | |
不等式组的解集是( ) A.x≥8 B.x>2 C.0<x<2 D.2<x≤8 |
9. 难度:中等 | |
在一次歌咏比赛中,某选手的得分情况如下:92,88,95,93,96,95,94.这组数据的众数和中位数分别是( ) A.94,94 B.95,95 C.94,95 D.95,94 |
10. 难度:中等 | |
如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( ) A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC |
11. 难度:中等 | |
如图,在平面直角坐标系中,点A1,A2在x轴上,点B1,B2在y轴上,其坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),分别以A1、A2、B1、B2其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是( ) A. B. C. D. |
12. 难度:中等 | |
如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是( ) A.75° B.60° C.45° D.30° |
13. 难度:中等 | |
如图,等边三角形OAB的一边OA在x轴上,双曲线在第一象限内的图象经过OB边的中点C,则点B的坐标是( ) A.(1,) B.(,1) C.(2,) D.(,2) |
14. 难度:中等 | |
如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为( ) A. B. C. D. |
15. 难度:中等 | |
因式分解4x-x3= . |
16. 难度:中等 | |
分式方程的解是 . |
17. 难度:中等 | |
如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是 . |
18. 难度:中等 | |
如图,等腰梯形ABCD中,AD∥BC,DE⊥BC,BD⊥DC,垂足分别为E,D,DE=3,BD=5,则腰长AB= . |
19. 难度:中等 | |
对于实数a,b,定义运算“﹡”:a﹡b=.例如4﹡2,因为4>2,所以4﹡2=42-4×2=8.若x1,x2是一元二次方程x2-5x+6=0的两个根,则x1﹡x2= . |
20. 难度:中等 | |
2013年1月1日新交通法规开始实施.为了解某社区居民遵守交通法规情况,小明随机选取部分居民就“行人闯红灯现象”进行问卷调查,调查分为“A:从不闯红灯;B:偶尔闯红灯;C:经常闯红灯;D:其他”四种情况,并根据调查结果绘制出部分条形统计图(如图1)和部分扇形统计图(如图2).请根据图中信息,解答下列问题: (1)本次调查共选取______名居民; (2)求出扇形统计图中“C”所对扇形的圆心角的度数,并将条形统计图补充完整; (3)如果该社区共有居民1600人,估计有多少人从不闯红灯? |
21. 难度:中等 | |
为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元. (1)若购买这批学习用品用了26000元,则购买A,B两种学习用品各多少件? (2)若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件? |
22. 难度:中等 | |
如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF. (1)求证:AF=DC; (2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论. |
23. 难度:中等 | |
如图,在△ABC中,∠ACB=90°,E为BC上一点,以CE为直径作⊙O,AB与⊙O相切于点D,连接CD,若BE=OE=2. (1)求证:∠A=2∠DCB; (2)求图中阴影部分的面积(结果保留π和根号). |
24. 难度:中等 | |||||||||
某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:
(2)求该机器的生产数量; (3)市场调查发现,这种机器每月销售量z(台)与售价a(万元∕台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价-成本) |
25. 难度:中等 | |
如图,矩形ABCD中,∠ACB=30°,将一块直角三角板的直角顶点P放在两对角线AC,BD的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别于边AB,BC所在的直线相交,交点分别为E,F. (1)当PE⊥AB,PF⊥BC时,如图1,则的值为______ |
26. 难度:中等 | |
如图,抛物线经过A(-1,0),B(5,0),C(0,)三点. (1)求抛物线的解析式; (2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标; (3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由. |