1. 难度:中等 | |
-|-2|的值为( ) A.-2 B.2 C. D.- |
2. 难度:中等 | |
2013年8月31日,我国第12届全民运动会即将开幕,据某市财政预算统计,用于体育场馆建设的资金约为14000000,14000000用科学记数法表示为( ) A.1.4×105 B.1.4×106 C.1.4×107 D.1.4×108 |
3. 难度:中等 | |
下列调查中适合采用全面调查的是( ) A.调查市场上某种白酒的塑化剂的含量 B.调查鞋厂生产的鞋底能承受弯折次数 C.了解某火车的一节车厢内感染禽流感病毒的人数 D.了解某城市居民收看辽宁卫视的时间 |
4. 难度:中等 | |
如图下面几何体的左视图是( ) A. B. C. D. |
5. 难度:中等 | |
下列计算正确的是( ) A.3mn-3n=m B.(2m)3=6m3 C.m8÷m4=m2 D.3m2•m=3m3 |
6. 难度:中等 | |
某校举行健美操比赛,甲、乙两班个班选20名学生参加比赛,两个班参赛学生的平均身高都是1.65米,其方差分别是=1.9,=2.4,则参赛学生身高比较整齐的班级是( ) A.甲班 B.乙班 C.同样整齐 D.无法确定 |
7. 难度:中等 | |||||||||||||
某班为了解学生“多读书、读好书”活动的开展情况,对该班50名学生一周阅读课外书的时间进行了统计,统计结果如下:
A.19,13 B.19,19 C.2,3 D.2,2 |
8. 难度:中等 | |
如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( ) A.30° B.20° C.15° D.14° |
9. 难度:中等 | |
如图,△ABC中,AB=6,AC=8,BC=10,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是( ) A.相交 B.相切 C.相离 D.无法确定 |
10. 难度:中等 | |
如图,将边长为4的正方形ABCD的一边BC与直角边分别是2和4的Rt△GEF的一边GF重合.正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运动.设正方形的运动时间为t秒,正方形ABCD与Rt△GEF重叠部分面积为s,则s关于t的函数图象为( ) A. B. C. D. |
11. 难度:中等 | |
若式子有意义,则x的取值范围是 . |
12. 难度:中等 | |
在一个不透明的袋子里装有6个白球和若干个黄球,它们除了颜色不同外,其它方面均相同,从中随机摸出一个球为白球的概率为,则黄球的个数为 . |
13. 难度:中等 | |
如图,张老师在上课前用硬纸做了一个无底的圆锥形教具,那么这个教具的用纸面积是 cm2.(不考虑接缝等因素,计算结果用π表示). |
14. 难度:中等 | |
如图,等腰梯形ABCD,AD∥BC,BD平分∠ABC,∠A=120°.若梯形的周长为10,则AD的长为 . |
15. 难度:中等 | |
小成每周末要到距离家5千米的体育馆打球,他骑自行车前往体育馆比乘汽车多用10分钟,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x千米/时,根据题意列方程为 . |
16. 难度:中等 | |
如图,⊙O直径AB=8,∠CBD=30°,则CD= . |
17. 难度:中等 | |
如图,矩形ABCD的边AB上有一点P,且AD=,BP=,以点P为直角顶点的直角三角形两条直角边分别交线段DC,线段BC于点E,F,连接EF,则tan∠PEF= . |
18. 难度:中等 | |
如图,在平面直角坐标系中,直线l经过原点O,且与x轴正半轴的夹角为30°,点M在x轴上,⊙M半径为2,⊙M与直线l相交于A,B两点,若△ABM为等腰直角三角形,则点M的坐标为 . |
19. 难度:中等 | |
先化简,再求值:,其中. |
20. 难度:中等 | |
如图,点A(1,a)在反比例函数(x>0)的图象上,AB垂直于x轴,垂足为点B,将△ABO沿x轴向右平移2个单位长度,得到Rt△DEF,点D落在反比例函数(x>0)的图象上. (1)求点A的坐标; (2)求k值. |
21. 难度:中等 | ||||||||||||||||
为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.请根据图表中提供的信息,解答下列问题:
(2)补全统计表中所缺的数据. (3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名? (4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率. |
22. 难度:中等 | |
如图,图1是某仓库的实物图片,图2是该仓库屋顶(虚线部分)的正面示意图,BE、CF关于AD轴对称,且AD、BE、CF都与EF垂直,AD=3米,在B点测得A点的仰角为30°,在E点测得D点的仰角为20°,EF=6米,求BE的长. (结果精确到0.1米,参考数据:) |
23. 难度:中等 | |
如图,AB,CD是⊙O的直径,点E在AB延长线上,FE⊥AB,BE=EF=2,FE的延长线交CD延长线于点G,DG=GE=3,连接FD. (1)求⊙O的半径; (2)求证:DF是⊙O的切线. |
24. 难度:中等 | |
端午节期间,某校“慈善小组”筹集到1240元善款,全部用于购买水果和粽子,然后到福利院送给老人,决定购买大枣粽子和普通粽子共20盒,剩下的钱用于购买水果,要求购买水果的钱数不少于180元但不超过240元.已知大枣粽子比普通粽子每盒贵15元,若用300元恰好可以买到2盒大枣粽子和4盒普通粽子. (1)请求出两种口味的粽子每盒的价格; (2)设买大枣粽子x盒,买水果共用了w元. ①请求出w关于x的函数关系式; ②求出购买两种粽子的可能方案,并说明哪一种方案使购买水果的钱数最多. |
25. 难度:中等 | |
如图,正方形ABCD的边长是3,点P是直线BC上一点,连接PA,将线段PA绕点P逆时针旋转90°得到线段PE,在直线BA上取点F,使BF=BP,且点F与点E在BC同侧,连接EF,CF. (1)如图,当点P在CB延长线上时,求证:四边形PCFE是平行四边形; (2)如图,当点P在线段BC上时,四边形PCFE是否还是平行四边形,说明理由; (3)在(2)的条件下,四边形PCFE的面积是否有最大值?若有,请求出面积的最大值及此时BP长;若没有,请说明理由. |
26. 难度:中等 | |
如图,抛物线y=ax2+bx+3与x轴相交于点A(-1,0)、B(3,0),与y轴相交于点C,点P为线段OB上的动点(不与O、B重合),过点P垂直于x轴的直线与抛物线及线段BC分别交于点E、F,点D在y轴正半轴上,OD=2,连接DE、OF. (1)求抛物线的解析式; (2)当四边形ODEF是平行四边形时,求点P的坐标; (3)过点A的直线将(2)中的平行四边形ODEF分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由) |