1. 难度:中等 | |
的相反数是( ) A. B. C. D. |
2. 难度:中等 | |
下列计算中,正确的是( ) A.2a+3b=5ab B.a•a3=a3 C.a6÷a2=a3 D.(-ab)2=a2b2 |
3. 难度:中等 | |
把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是( ) A. B. C. D. |
4. 难度:中等 | |
关于x,y的二元一次方程组的解也是二元一次方程2x+3y=-6的解,则k的值是( ) A.- B. C. D.- |
5. 难度:中等 | |
第五次全国人口普查结果显示,我国总人口约为1 300 000 000人,用科学记数法表示这个数正确的是( ) A.13×108 B.1.3×109 C.0.13×1010 D.13×109 |
6. 难度:中等 | |
把一个小球以20m/s的速度竖直向上弹出,它在空中的高度h(m)与时间t(s)满足关系:h=20t-5t2.当h=20时,小球的运动时间为( ) A.20s B.2s C.(2+2)s D.(2-2)s |
7. 难度:中等 | |
如图,矩形ABCD中,BC=4,AB=3,E为边AD上一点,DE=1,动点P、Q同时从点C出发,点P沿CB运动到点B时停止,点Q沿折线CD-DE-EB运动到点B时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△CPQ的面积为y cm2.则y与t的函数关系图象大致是( ) A. B. C. D. |
8. 难度:中等 | |
若两圆的半径分别是2cm和5cm,圆心距为3cm,则这两圆的位置关系是( ) A.外离 B.相交 C.外切 D.内切 |
9. 难度:中等 | |
如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(-6,4),则△AOC的面积为( ) A.12 B.9 C.6 D.4 |
10. 难度:中等 | |
如图,在三角形纸片ABC中,∠ACB=90°,BC=3,AB=6.在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则CE的长度为( ) A.3 B.6 C. D. |
11. 难度:中等 | |
如图,有一种动画程序,屏幕上正方形ABCD是黑色区域(含正方形边界),其中A(1,1),B(2,1),C(2,2),D(1,2),用信号枪沿直线y=-2x+b发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b的取值范围为( ) A.3<b<6 B.2<b<6 C.3≤b≤6 D.2<b<5 |
12. 难度:中等 | |
等腰三角形ABC中,AB=AC,BC=4,以BC中点为圆心作与两腰相切的圆,过圆上一点F作切线交AB、AC于D、E,则BD•CE的值是( ) A.4 B.8 C.12 D.缺条件,不能求 |
13. 难度:中等 | |
若m、n互为倒数,则mn2-(n-1)的值为 . |
14. 难度:中等 | |
函数y=+中自变量x的取值范围是 . |
15. 难度:中等 | |
如图是小明制作的一个圆锥形纸帽的示意图.围成这个纸帽的纸的面积为 cm2(π取3.14). |
16. 难度:中等 | |
如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点O为位似中心,将△ABC缩小,使变换后得到的△DEF与△ABC对应边的比为1:2,则线段AC的中点P变换后对应的点的坐标为 . |
17. 难度:中等 | |
如图,矩形ABCD的边AB在y轴上,AB的中点与原点重合,AB=2,AD=1,过定点Q(2,0)和动点P(0,a)的直线与矩形ABCD的边有公共点,则a的取值范围是 . |
18. 难度:中等 | |
如图,∠AOB=45°,过OA上到点O的距离分别为1,3,5,7,9,11,…的点作OA的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别 为S1,S2,S3,S4,….观察图中的规律,第n(n为正整数)个黑色梯形的面积是Sn= . |
19. 难度:中等 | |
已知,求出的值. |
20. 难度:中等 | |
列方程或方程组解应用题: 京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的.小王用自驾车方式上班平均每小时行驶多少千米? |
21. 难度:中等 | |
一艘轮船自西向东航行,在A处测得东偏北21.3°方向有一座小岛C,继续向东航行60海里到达B处,测得小岛C此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C最近?(参考数据:sin21.3°≈,tan21.3°≈,sin63.5°≈,tan63.5°≈2) |
22. 难度:中等 | |
已知反比例函数y=(m为常数)的图象经过点A(-1,6). (1)求m的值; (2)如图,过点A作直线AC与函数y=的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标. |
23. 难度:中等 | |
如图所示,AC为⊙O的直径且PA⊥AC,BC是⊙O的一条弦,直线PB交直线AC于点D,. (1)求证:直线PB是⊙O的切线; (2)求cos∠BCA的值. |
24. 难度:中等 | ||||||||||
为了促进长三角区域的便捷沟通,实现节时、节能,杭州湾跨海大桥于2008年5月1日通车,下表是宁波到上海两条线路的有关数据:
(2)若小车每公里的油耗为x升,汽油价格为5.00元/升,问x为何值时,走哪条线路的总费用较少(总费用=过路费+油耗费); (3)据杭州湾跨海大桥管理部门统计:从宁波经跨海大桥到上海的小车中,其中五类不同油耗的小车平均每小时通过的车辆数,得到如图所示的频数分布直方图,请你估算1天内这五类小车走直路比走弯路共节省多少升汽油? |
25. 难度:中等 | |
如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系: (1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系; ②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2,如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断; (2)将原题中正方形改为矩形(如图4-6),且AB=a,BC=b,CE=ka,CG=kb(a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由; (3)在第(2)题图5中,连接DG、BE,且a=3,b=2,k=,求BE2+DG2的值. |
26. 难度:中等 | |
如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D. (1)求该抛物线的函数关系式; (2)当△ADP是直角三角形时,求点P的坐标; (3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由. |