1. 难度:中等 | |
-1的倒数是( ) A.1 B.-1 C.±1 D.0 |
2. 难度:中等 | |
下列计算正确的是( ) A.a3+a2=a5 B.(3a-b)2=9a2-b2 C.a6b÷a2=a3b D.(-ab3)2=a2b6 |
3. 难度:中等 | |||||||||||||||
下列数据是2013年3月7日6点公布的中国六大城市的空气污染指数情况:
A.164和163 B.105和163 C.105和164 D.163和164 |
4. 难度:中等 | |
如图,直线y=x+a-2与双曲线y=交于A、B两点,则当线段AB的长度取最小值时,a的值为( ) A.0 B.1 C.2 D.5 |
5. 难度:中等 | |
一张坐凳的形状如图所示,以箭头所指的方向为主视方向,则它的左视图可以是( ) A. B. C. D. |
6. 难度:中等 | |
若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x,y)在x轴下方,则下列判断正确的是( ) A.a>0 B.b2-4ac≥0 C.x1<x<x2 D.a(x-x1)(x-x2)<0 |
7. 难度:中等 | |
分解因式:x2-4= . |
8. 难度:中等 | |
如图△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为 . |
9. 难度:中等 | |
某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人,请列出满足题意的方程组 . |
10. 难度:中等 | |
如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,若AB=2,BC=2,则图中阴影部分的面积为 . |
11. 难度:中等 | |
观察下列图形中点的个数,若按其规律再画下去,可以得到第n个图形中所有点的个数为 (用含n的代数式表示). |
12. 难度:中等 | |
若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一个符合题意的一元二次方程 . |
13. 难度:中等 | |
如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为 . |
14. 难度:中等 | |
平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是 . |
15. 难度:中等 | |
解不等式组,并将解集在数轴上表示出来. |
16. 难度:中等 | |
如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺按要求画图. (1)在图1中,画出△ABC的三条高的交点; (2)在图2中,画出△ABC中AB边上的高. |
17. 难度:中等 | |
先化简,再求值:÷+1,在0,1,2三个数中选一个合适的,代入求值. |
18. 难度:中等 | |
甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件. (1)下列事件是必然事件的是( ) A、乙抽到一件礼物 B、乙恰好抽到自己带来的礼物 C、乙没有抽到自己带来的礼物 D、只有乙抽到自己带来的礼物 (2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A),请列出事件A的所有可能的结果,并求事件A的概率. |
19. 难度:中等 | |
如图,在平面直角坐标系中,反比例函数y=(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6). (1)直接写出B、C、D三点的坐标; (2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式. |
20. 难度:中等 | |
生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此数学兴趣小组的同学对某单位的某次会议所用矿泉水的浪费情况进行调查,为期半天的会议中,每人发一瓶500ml的矿泉水,会后对所发矿泉水喝的情况进行统计,大致可分为四种:A、全部喝完;B、喝剩约;C、喝剩约一半;D开瓶但基本未喝.同学们根据统计结果绘制成如下两个统计图,根据统计图提供的信息,解答下列问题: (1)参加这次会议的有多少人?在图(2)中D所在扇形的圆心角是多少度?并补全条形统计图; (2)若开瓶但基本未喝算全部浪费,试计算这次会议平均每人浪费的矿泉水约多少毫升?(计算结果请保留整数) (3)据不完全统计,该单位每年约有此类会议60次,每次会议人数约在40至60人之间,请用(2)中计算的结果,估计该单位一年中因此类会议浪费的矿泉水(500ml/瓶)约有多少瓶?(可使用科学记算器) |
21. 难度:中等 | |
如图1,一辆汽车的背面,有一种特殊性状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB,如图2所示,量得连杆OA长为10cm,雨刮杆AB长为48cm,∠OAB=120°.若启动一次刮雨器,雨刮杆AB正好扫到水平线CD的位置,如图3所示. (1)求雨刮杆AB旋转的最大角度及O、B两点之间的距离;(结果精确到0.01) (2)求雨刮杆AB扫过的最大面积.(结果保留π的整数倍)(参考数据:sin60°=,cos60°=,tan60°=,≈26.851,可使用科学记算器) |
22. 难度:中等 | |
如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y轴交点A,点P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x轴于点C. (1)证明PA是⊙O的切线; (2)求点B的坐标; (3)求直线AB的解析式. |
23. 难度:中等 | |
某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程: ●操作发现: 在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是______(填序号即可) ①AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB. ●数学思考: 在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD与ME具有怎样的数量和位置关系?请给出证明过程; ●类比探究: 在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:______. |
24. 难度:中等 | |
已知抛物线yn=-(x-an)2+an(n为正整数,且0<a1<a2<…<an)与x轴的交点为An-1(bn-1,0)和An(bn,0),当n=1时,第1条抛物线y1=-(x-a1)2+a1与x轴的交点为A(0,0)和A1(b1,0),其他依此类推. (1)求a1,b1的值及抛物线y2的解析式; (2)抛物线y3的顶点坐标为(______,______);依此类推第n条抛物线yn的顶点坐标为(______,______);所有抛物线的顶点坐标满足的函数关系式是______; (3)探究下列结论: ①若用An-1An表示第n条抛物线被x轴截得的线段长,直接写出AA1的值,并求出An-1An; ②是否存在经过点A(2,0)的直线和所有抛物线都相交,且被每一条抛物线截得的线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由. |