1. 难度:中等 | |
某市4月份某天的最高气温是5℃,最低气温是-3℃,那么这天的温差(最高气温减最低气温)是( ) A.-2℃ B.8℃ C.-8℃ D.2℃ |
2. 难度:中等 | |
下列图形中,既是轴对称图形又是中心对称图形的有( ) A.4个 B.3个 C.2个 D.1个 |
3. 难度:中等 | |
铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是( ) A.5(x+21-1)=6(x-1) B.5(x+21)=6(x-1) C.5(x+21-1)=6 D.5(x+21)=6 |
4. 难度:中等 | |
一次函数y=mx+|m-1|的图象过点(0,2),且y随x的增大而增大,则m=( ) A.-1 B.3 C.1 D.-1或3 |
5. 难度:中等 | |
如图所示,把一张矩形纸片对折,折痕为AB,在把以AB的中点O为顶点的平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是( ) A.正三角形 B.正方形 C.正五边形 D.正六边形 |
6. 难度:中等 | |
在平面直角坐标系中,对于平面内任意一点(x,y),若规定以下两种变换: ①f(x,y)=(y,x).如f(2,3)=(3,2); ②g(x,y)=(-x,-y),如g(2,3)=(-2,-3). 按照以上变换有:f(g(2,3))=f(-2,-3)=(-3,-2),那么g(f(-6,7))等于( ) A.(7,6) B.(7,-6) C.(-7,6) D.(-7,-6) |
7. 难度:中等 | |
如图,等边△ABC的周长为6π,半径是1的⊙O从与AB相切于点D的位置出发,在△ABC外部按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,则⊙O自转了( ) A.2周 B.3周 C.4周 D.5周 |
8. 难度:中等 | |
如图,直角梯形AOCD的边OC在x轴上,O为坐标原点,CD垂直于x轴,D(5,4),AD=2.若动点E、F同时从点O出发,E点沿折线OA→AD→DC运动,到达C点时停止;F点沿OC运动,到达C点是停止,它们运动的速度都是每秒1个单位长度.设E运动秒x时,△EOF的面积为y(平方单位),则y关于x的函数图象大致为( ) A. B. C. D. |
9. 难度:中等 | |
使式子+有意义的x的取值范围是 . |
10. 难度:中等 | |
如图,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF.将△ABE绕正方形的对角线交点O按顺时针方向旋转到△BCF,则旋转角是 °. |
11. 难度:中等 | |
一个盒子里有完全相同的三个小球,球上分别标有数字1,1,2.随机摸出一个小球(不放回),其数字为p,再随机摸出另一个小球,其数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是 . |
12. 难度:中等 | |
如图,矩形OABC内接于扇形MON,当CN=CO时,∠NMB的度数是 . |
13. 难度:中等 | |
用八个同样大小的小立方体粘成一个大立方体如图1,得到的几何体的三视图如图2所示,若小明从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图仍是图2,则他取走的小立方体最多可以是 个. |
14. 难度:中等 | |
如图,平行四边形ABCD的顶点A、C在双曲线y1=-上,B、D在双曲线y2=上,k1=2k2(k1>0),AB∥y轴,S▱ABCD=24,则k1= . |
15. 难度:中等 | |
已知:在△ABC中,AC=a,AB与BC所在直线成45°角,AC与BC所在直线形成的夹角的余弦值为(即cosC=),则AC边上的中线长是 . |
16. 难度:中等 | |
先化简÷(-x+2),再选一个适当的x代入求值. |
17. 难度:中等 | ||||||||||||||||||||||
九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:
(2)若该小区用水量不超过15t的家庭占被调查家庭总数的百分比; (3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户? |
18. 难度:中等 | |
如图,四边形ABCD是正方形,其中A(1,1),B(3,1),D(1,3).反比例函数的图象经过对角线BD的中点M,与BC,CD的边分别交于点P、Q. (1)直接写出点M,C的坐标; (2)求直线BD的解析式; (3)线段PQ与BD是否平行?并说明理由. |
19. 难度:中等 | |
如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点N,连接BM,DN. (1)求证:四边形BMDN是菱形; (2)若AB=4,AD=8,求MD的长. |
20. 难度:中等 | |
如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请将下面2小题的结果都精确到0.1米,参考数据:≈1.732). (1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为______米; (2)一座建筑物GH距离坡角A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米? |
21. 难度:中等 | |
已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物. 根据以上信息,解答下列问题: (1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案; (3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费. |
22. 难度:中等 | |
如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm.现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以1.25厘米/秒的速度沿BC向终点C运动.过点P作PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0). (1)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行,为什么? (2)连接DP,当t为何值时,四边形EQDP能成为平行四边形? (3)当t为何值时,△EDQ为直角三角形? |
23. 难度:中等 | |
如图,顶点坐标为(2,-1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点. (1)求抛物线的表达式; (2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积; (3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F.问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,求点E的坐标;若不存在,请说明理由. |