相关试卷
当前位置:首页 > 初中数学试卷 > 试卷信息
2012年山东省青岛市李沧区中考数学一模试卷(解析版)
一、选择题
详细信息
1. 难度:中等
-3的倒数为( )
A.-manfen5.com 满分网
B.manfen5.com 满分网
C.3
D.-3
详细信息
2. 难度:中等
沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
详细信息
3. 难度:中等
自从扫描隧道显微镜发明后,世界上便诞生了一门新的学科,这就是纳米技术.已知52个纳米的长度为0.000000052米,用科学记数法表示这个数为( )
A.5.2×10-7
B.0.52×10-7
C.5.2×10-8
D.52×10-8
详细信息
4. 难度:中等
已知⊙O1、⊙O2的半径分别是r1=2、r2=4,若两圆相交,则圆心距O1O2可能取的值是( )
A.2
B.4
C.6
D.8
详细信息
5. 难度:中等
某班50名学生的一次英语听力测试成绩分布如下表所示(满分10分):
成绩(分) 10 
 人数(人) 0 0 615 19 
这次听力测试成绩的众数是( )
A.5分
B.6分
C.9分
D.10分
详细信息
6. 难度:中等
一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有( )
A.18个
B.15个
C.12个
D.10个
详细信息
7. 难度:中等
小刚用一张半径为24cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸板的面积是( )
manfen5.com 满分网
A.120πcm2
B.240πcm2
C.260πcm2
D.480πcm2
详细信息
8. 难度:中等
已知甲、乙两地相距s(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度v(km/h)的函数关系图象大致是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
二、填空题
详细信息
9. 难度:中等
计算:manfen5.com 满分网=   
详细信息
10. 难度:中等
分解因式:a3-4ab2=   
详细信息
11. 难度:中等
我区为举办2014年世园会,计划将某条道路两旁的人行道进行改造.经调查知:若该工程由甲工程队单独做恰好可在规定时间内完成;若该工程由乙工程队单独完成,则所需天数是规定时间的2倍,如果甲、乙辆工程队合作6天后,那么余下的工程由甲工程队单独来做还需3天才能完成.若设要求完成这项工程规定的时间是x天,根据题意可得方程   
详细信息
12. 难度:中等
如图,身高为1.5m的某学生想测量一棵大树的高度,她沿着树影BA由B到A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3m,CA=1m,则树的高度为    m.
manfen5.com 满分网
详细信息
13. 难度:中等
如图,将△ABC绕点C(0,-1)旋转180°得到△A′B′C′,设点A′的坐标为(a,b),则点A的坐标为   
manfen5.com 满分网
详细信息
14. 难度:中等
如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是   
manfen5.com 满分网
三、解答题
详细信息
15. 难度:中等
求作一点P,使PC=PD,且点P到AC,AB的距离相等.(要求保留作图痕迹,不必写出作法)

manfen5.com 满分网
详细信息
16. 难度:中等
(1)解二元一次方程组manfen5.com 满分网
(2)化简:manfen5.com 满分网
详细信息
17. 难度:中等
2012年3月20日,根据国家发改委的相关政策,从凌晨起,青岛市场上的汽柴油零售价格全面进行上调.其中市民私家车常用的93号汽油从目前执行的7.5元/升上调至7.99元/升,某报纸调查员就“关于汽油涨价对用车会造成的影响”这一问题想有关机动车的私家车车车主进行了问卷调差,并制作了统计图表的一部分如下:
车主的态度百分比
A、没有影响4%
B、影响不大,还可以接受p
C、有影响,现在用车次数减少了52%
D、影响很大,需要放弃用车m
E、不关心这个问题10%
manfen5.com 满分网
(1)结合上面的统计图可得:p=______;m=______
(2)根据以上信息,请补全条形统计图;
(3)2012年3月末,若该市有机动车的私家车车主约890000人,根据以上信息,请你估计一下持有“影响不大,还可以接受”这种态度的车主约有多少人?
详细信息
18. 难度:中等
我市第四高级中学与第六高级中学之间进行一场足球比赛,邀请某校两位体育老师及九年级足球迷当裁判.九年级的一位足球迷设计了开球方式.
(1)两位体育老师各掷一枚一元硬币,两枚硬币落地后正面朝上第四高级中学开球,否则第六高级中学开球.请用树状图或列表的方法,求第四高级中学开球的概率;
(2)九年级的另一位足球迷发现前面设计的开球方式不合理,他修改规则:如果两枚硬币都朝上时,第四高级中学得8分,否则第六高级中学得4分,根据概率计算,谁的得分高,谁开球.你认为修改后的规则公平吗?请说明理由;若不公平,请你设计对双方公平的开球方式.
详细信息
19. 难度:中等
如图,某风景区的湖心岛有一凉亭A,其正东方向有一棵大树B,小明想测量A、B之间的距离,他从湖边的C处测得A在北偏西45°方向上,测得B在北偏东32°方向上,且量得B、C之间的距离为100米,根据上述测量结果,请你帮小明计算A、B之间的距离是多少?(精确到1米,参考数据:sin32°=0.5299,cos32°=0.8480)

manfen5.com 满分网
详细信息
20. 难度:中等
在“老人节”前夕,某旅行社组织了一个“夕阳红”旅行团,共有253名老人报名参加,旅行前,旅行社承诺每车保证有且只有一名随团医生,并为此次旅行请了7名医生,现打算选租甲、乙两种客车,其中甲种客车每辆载客40人,乙种客车每辆载客30人.
(1)请帮助旅行社设计租车方案.
(2)若甲种客车租金为350元每辆,乙种客车租金为280元每辆,旅行社按照哪种方案租车最省钱?此时租金是多少?
详细信息
21. 难度:中等
已知:如图,在直角梯形ABCD中,∠ABC=90°,AD∥BC,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.
(1)求证:AB=AF;
(2)若∠ACB=30°,连接AG,判断四边形AGCD是什么特殊的四边形?并证明你的结论.

manfen5.com 满分网
详细信息
22. 难度:中等
某专卖店专销某种品牌的电子产品,进价12元/只,售价20元/只.为了促销,专卖店决定凡是买10只以上的,每多买一只,售价就降低0.1元(例如,某人买20只,于是每只降价0.1×(20-10)=1元,这样就可以按19元/只的价格购买这20只产品),但是最低价为16元/只.
(1)若顾客想以最低价购买的话,一次至少要买多少只?
(2)若x表示顾客购买该产品的数量,y表示专卖店获得的利润,求y与x的函数关系式;并求出专卖店一次共获利润180元时,该顾客此次所购买的产品数量.
(3)有一天,一位顾客买了46只,另一位顾客买了50只,专卖店发现卖了50只反而比卖46只赚的钱少.为了使每次卖的多赚钱也多,在其他促销条件不变的情况下,最低价16元/只至少要提高到多少元/只?
详细信息
23. 难度:中等
【问题引入】
几个人拎着水桶在一个水龙头前面排队打水,水桶有大有小.他们该怎样排队才能使得总的排队时间最短?
假设只有两个人时,设大桶接满水需要T分钟,小桶接满水需要t分钟(显然T>t),若拎着大桶者在拎着小桶者之前,则拎大桶者可直接接水,只需等候T分钟,拎小桶者一共等候了(T+t)分钟,两人一共等候了(2T+t)分钟;反之,若拎小桶者在拎大桶者前面,容易求出出两人接满水等候(T+2t)分钟.可见,要使总的排队时间最短,拎小桶者应排在拎大桶者前面.这样,我们可以猜测,几个人拎着水桶在一个水龙头前面排队打水,要使总的排队时间最短,需将他们按水桶从小到大排队.
规律总结:
事实上,只要不按从小到大的顺序排队,就至少有紧挨着的两个人拎着大桶者排在拎小桶者之前,仍设大桶接满水需要T分钟,小桶接满水需要t分钟,并设拎大桶者开始接水时已等候了m分钟,这样拎大桶者接满水一共等候了(m+T)分钟,拎小桶者一共等候了(m+T+t)分钟,两人一共等候了(2m+2T+t)分钟,在其他人位置不变的前提下,让这两个人交还位置,即局部调整这两个人的位置,同样介意计算两个人接满水共等候了______分钟,共节省了______分钟,而其他人等候的时间未变,这说明只要存在有紧挨着的两个人是拎大桶者在拎小桶者之前都可以这样调整,从而使得总等候时间减少.这样经过一系列调整后,整个队伍都是从小打到排列,就打到最优状态,总的排队时间就最短.
【方法探究】
一般的,对某些设计多个可变对象的数学问题,先对其少数对象进行调整,其他对象暂时保持不变,从而化难为易,取得问题的局部解决.经过若干次这种局部的调整,不断缩小范围,逐步逼近目标,最终使问题得到解决,这种数学思想就叫做局部调整法.
【实践应用1】
如图1在锐角△ABC中,AB=manfen5.com 满分网,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是多少?
解析:
(1)先假定N为定点,调整M到合适的位置使BM+MN有最小值(相对的),容易想到,在AC上作AN′=AN(即作点N关于AD的对称点N'),连接BN′交AD于M,则M点是使BM+MN有相对最小值的点.(如图2,M点是确定方法找到的)
(2)在考虑点N的位置,使BM+MN最终达到最小值.可以理解,BM+MN=BM+MN′,所以要使BM+MN′有最小值,只需使______,此时BM+MN的最小值是______
【实践应用2】
如图3,把边长是3的正方形等分成9个小正方形,在有阴影的小正方形内(包括边界)分别取点P、R,于已知格点Q(每个小正方形的顶点叫做格点)构成三角形,则△PQR的最大面积是______,请在图4中画出面积最大时的△PQR的图形.
manfen5.com 满分网
详细信息
24. 难度:中等
如图,在Rt△ABC,∠C=90°,AC=6cm,AB=10cm,点P从点C出发沿CA边以1cm/s的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以1cm/s的速度向点B匀速运动,点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.伴随着P、Q运动,DE保持垂直平分PQ,且交PQ于点D,交折线BC(或AB或CA)于点E.设P、Q运动的时间是t秒(0<t<10).
(1)当t=2s时,求AP的长.
(2)设△APQ的面积为S(cm2),图中,当点P从C向A运功的过程中,求S与t的函数关系式;
(3)在(2)的条件下,是否存在某一时刻t,使△APQ的面积是△ABC面积的manfen5.com 满分网?若存在,求出此时t的值;若不存在,说明理由;
(4)当点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值;若不能,请说明理由.

manfen5.com 满分网
Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.