1. 难度:中等 | |
在平行四边形、矩形、菱形、正方形、等腰梯形5种图形中,既是轴对称,又是中心对称的图形有 . |
2. 难度:中等 | |
钟表的分针匀速旋转一周需要60min,那么分针旋转一周,时针旋转 度;下午3:30时,时针与分针的夹角为 度. |
3. 难度:中等 | |
如图1,将边长为2cm的两个互相重合的正方形纸片按住其中一个不动,另一个绕点B顺时针旋转一个角度,若使重叠部分的面积为cm2,则这个旋转角度为 度. 如图2,将上述两个互相重合的正方形纸片沿对角线AC翻折成等腰直角三角形后,再抽出其中一个等腰直角三角形沿AC移动,若重叠部分△A′PC的面积是1cm2,则它移动的距离AA′等于 cm. |
4. 难度:中等 | |
如图,ABCD是一张矩形纸片,点O为矩形对角线的交点,直线MN经过点O交AD于M,交BC于N. 操作:先沿直线MN剪开,并将直角梯形MNCD绕点O旋转 度后(填入一个你认为正确答案的序号:①90;②180;③270;④360.恰与直角梯形NMAB完全重合;再将重合后的直角梯形MNCD以直线MN为轴翻转180°后所得的图形是下列中的 (填写正确图形的代号) |
5. 难度:中等 | |
下列图形中,既是中心对称图形又是轴对称图形的是( ) A. B. C. D. |
6. 难度:中等 | |
将叶片图案旋转180°后,得到的图形是( ) A. B. C. D. |
7. 难度:中等 | |
下列图案都是由字母“m”经过变形、组合而成的,其中不是中心对称图形的是( ) A. B. C. D. |
8. 难度:中等 | |
如图,直线y=x+与y轴交于点P,将它绕着点P旋转90°所得的直线的解析式为( ) A.y=-x+ B.y=-x+ C.y=x+2 D.y=-x+ |
9. 难度:中等 | |
如图,两张完全重合的正方形纸片,将上面一张正方形纸片绕着它的中心O按顺时针方向旋转,旋转的角度数依次为45°,90°,135°,180°,能够使得两张正方形纸片完全重合的旋转角度数为( ) A.90° B.180° C.90°,180° D.45°,90°,135°,180° |
10. 难度:中等 | |
如图,菱形公园内有四个景点,请你用两种不同的方法,按下列要求设计成四个部分: (1)用直线分割; (2)每个部分内各有一个景点; (3)各部分的面积相等.(可用铅笔画,只要求画图正确,不写画法) |
11. 难度:中等 | |
如图,在10×5的正方形网格中,每个小正方形的边长均为单位1,将△ABC向右平移4个单位,得到△A′B′C′,再把△A′B′C′绕点A′逆时针旋转90°得到△A″B″C″,请你画出△A′B′C′,和△A″B″C″(不要求写画法). |
12. 难度:中等 | |
把两个全等的等腰直角三角形ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点逆时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②). (1)在上述旋转过程中,BH与CK有怎样的数量关系四边形CHGK的面积有何变化?证明你发现的结论; (2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围; (3)在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的?若存在,求出此时x的值;若不存在,说明理由. |
13. 难度:中等 | |
在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角.例如:正方形绕着它的对角线的交点旋转90°后能与自身重合(如图),所以正方形是旋转对称图形,它有一个旋转角为90度. (1)判断下列命题的真假(在相应的括号内填上“真”或“假”). ①等腰梯形是旋转对称图形,它有一个旋转角为180度.(______) ②矩形是旋转对称图形,它有一个旋转角为180°.(______) (2)填空:下列图形中,是旋转对称图形,且有一个旋转角为120°的是______(写出所有正确结论的序号):①正三角形;②正方形;③正六边形;④正八边形. (3)写出两个多边形,它们都是旋转对图形,都有一个旋转角为72°,并且分别满足下列条件: ①是轴对称图形,但不是中心对称图形:______; ②既是轴对称图形,又是中心对称图形:______. |
14. 难度:中等 | |
如图1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转. (1)如图2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想; (2)若三角尺GEF旋转到如图3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由. |