1. 难度:中等 | |
(易错题)如图,△ABC和△A′B′C′中,AC=A′C′=3,BC=B′C′=4,AB=A′B′=5,将顶点C′与C重合,△A′B′C′绕着点C旋转,旋转过程中,A′C′交AB于点E,A′B′交AB于点F,交BC于点D. (1)当A′C′⊥AB时,判断△C′DB′和△A′C′D的形状; (2)当△ACE为等腰三角形时,求出此时AE的值. |
2. 难度:中等 | |
已知,点P是正方形ABCD内的一点,连PA、PB、PC. (1)将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图1). ①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积; ②若PA=2,PB=4,∠APB=135°,求PC的长; (2)如图2,若PA2+PC2=2PB2,请说明点P必在对角线AC上. |
3. 难度:中等 | |
已知:在△ABC中,AB=AC,若将△ABC顺时针旋转180°,得到△FEC. (1)试猜想AE与BF有何关系?说明理由; (2)若△ABC的面积为3cm2,求四边形ABFE的面积; (3)当∠ACB为多少度时,四边形ABFE为矩形?说明理由. |
4. 难度:中等 | |
如图,梯形ABCD中,DC∥AB,EF是中位线,EG⊥AB于G,FH⊥AB于H,梯形的高h=(AB+DC).沿着GE,HF分别把△AGE,△BHF剪开,然后按图中箭头所指方向,分别绕着点E,F旋转180°,将会得到一个什么样的四边形?简述理由. |
5. 难度:中等 | |
如图,平面直角坐标系中,△ABC为等边三角形,其中点A、B、C的坐标分别为(-3,-1)、(-3,-3)、(-3+,-2).现以y轴为对称轴作△ABC的对称图形,得△A1B1C1,再以x轴为对称轴作△A1B1C1的对称图形,得△A2B2C2. (1)直接写出点C1、C2的坐标; (2)能否通过一次旋转将△ABC旋转到△A2B2C2的位置?你若认为能,请作出肯定的回答,并直接写出所旋转的度数;你若认为不能,请作出否定的回答(不必说明理由); (3)设当△ABC的位置发生变化时,△A2B2C2、△A1B1C1与△ABC之间的对称关系始终保持不变. ①当△ABC向上平移多少个单位时,△A1B1C1与△A2B2C2完全重合并直接写出此时点C的坐标; ②将△ABC绕点A顺时针旋转α°(0≤α≤180),使△A1B1C1与△A2B2C2完全重合,此时α的值为多少点C的坐标又是什么? |
6. 难度:中等 | |
如图,点O是正六边形ABCDEF的中心. (1)找出这个轴对称图形的对称轴; (2)这个正六边形绕点O旋转多少度后能和原来的图形重合? (3)如果换成其他的正多边形呢?能得到一般的结论吗? |
7. 难度:中等 | |
如图,△ABC中,∠ACB=90°,AC=BC=1,将△ABC绕点C逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,AlB1分别交AB、AC于E、F. (1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以证明(△ABC与△A1B1C1全等除外); (2)当△BB1D是等腰三角形时,求α; (3)当α=60°时,求BD的长. |