1. 难度:中等 | |
若x,y为实数,且|x+2|+=0,则()2009的值为( ) A.1 B.-1 C.2 D.-2 |
2. 难度:中等 | |
方程(x-3)(x+1)=x-3的解是( ) A.x=0 B.x=3 C.x=3或x=-1 D.x=3或x=0 |
3. 难度:中等 | |
若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则k的取值范围是( ) A.k>-1 B.k>-1且k≠0 C.k<1 D.k<1且k≠0 |
4. 难度:中等 | |
如图,已知⊙O的两条弦AC,BD相交于点E,∠A=70°,∠c=50°,那么sin∠AEB的值为( ) A. B. C. D. |
5. 难度:中等 | |
已知⊙O1和⊙O2的半径分别为3cm和2cm,圆心距O1O2=4cm,则两圆的位置关系是( ) A.相切 B.内含 C.外离 D.相交 |
6. 难度:中等 | |
如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=( ) A.35° B.45° C.50° D.55° |
7. 难度:中等 | |
抛物线y=a(x+1)2+2的一部分如图所示,该抛物线在y轴右侧部分与x轴交点的坐标是( ) A.(,0) B.(1,0) C.(2,0) D.(3,0) |
8. 难度:中等 | |
如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D,E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是( ) A. B. C. D. |
9. 难度:中等 | |
使有意义的x的取值范围是 . |
10. 难度:中等 | |
某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x,则可列方程 . |
11. 难度:中等 | |
如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是 . |
12. 难度:中等 | |
已知二次函数的图象经过原点及点(-,-),且图象与x轴的另一交点到原点的距离为1,求该二次函数的解析式. |
13. 难度:中等 | |
如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P(偶数),指针指向标有奇数所在区域的概率为P(奇数),则P(偶数) P(奇数). |
14. 难度:中等 | |
如图,把矩形ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在A′处,若AE=a,AB=b,BF=c,请写出a,b,c之间的一个等量关系 . |
15. 难度:中等 | |
如图,已知△ADC中,∠ADC=90°,AD=DC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是 . |
16. 难度:中等 | |
如图,梯形ABCD中,AD∥BC,∠C=90°,AB=AD=4,BC=6,以A为圆心在梯形内画出一个最大的扇形(图中阴影部分)的面积是 . |
17. 难度:中等 | |
如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M、N分别是AD、BC边的中点,则A′N= ;若M、N分别是AD、BC边的上距DC最近的n等分点(n≥2,且n为整数),则A′N= (用含有n的式子表示). |
18. 难度:中等 | |
二次函数的图象如图所示,点A位于坐标原点,A1,A2,A3,…,A2009在y轴的正半轴上,B1,B2,B3,…,B2009在二次函数第一象限的图象上,若△AB1A1,△A1B2A2,△A2B3A3,…,△A2008B2009A2009都为等边三角形,计算出△A2008B2009A2009的边长为 . |
19. 难度:中等 | |
计算:. |
20. 难度:中等 | ||||||||||||||||||||||||||||||||||
为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据如下表(单位:秒):
(2)计算甲、乙两种电子钟走时误差的方差; (3)根据经验,走时稳定性较好的电子钟质量更优.若两种类型的电子钟价格相同,请问:你买哪种电子钟?为什么? |
21. 难度:中等 | |
已知:如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点F. (1)求证:AM=DM; (2)若DF=2,求菱形ABCD的周长. |
22. 难度:中等 | |
在一次课外实践活动中,同学们要测量某公园人工湖两侧A,B两个凉亭之间的距离.现测得AC=30m,BC=70m,∠CAB=120°,请计算A,B两个凉亭之间的距离. |
23. 难度:中等 | |
已知关于x的一元二次方程2x2+4x+k-1=0有实数根,k为正整数. (1)求k的值; (2)当此方程有两个非零的整数根时,将关于x的二次函数y=2x2+4x+k-1的图象向下平移8个单位,求平移后的图象的解析式; (3)在(2)的条件下,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线y=x+b(b<k)与此图象有两个公共点时,b的取值范围. |
24. 难度:中等 | |
已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径. (1)求证:AE与⊙O相切; (2)当BC=4,cosC=时,求⊙O的半径. |
25. 难度:中等 | |
在平行四边形ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90°得到线段EF(如图1) (1)在图1中画图探究: ①当P为射线CD上任意一点(P1不与C重合)时,连接EP1;绕点E逆时针旋转90°得到线段EG1.判断直线FG1与直线CD的位置关系,并加以证明; ②当P2为线段DC的延长线上任意一点时,连接EP2,将线段EP2绕点E逆时针旋转90°得到线段EG2.判断直线G1G2与直线CD的位置关系,画出图形并直接写出你的结论. (2)若AD=6,tanB=,AE=1,在①的条件下,设CP1=x,S△P1FG1=y,求y与x之间的函数关系式,并写出自变量x的取值范围. |
26. 难度:中等 | |
已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D. (Ⅰ)若折叠后使点B与点A重合,求点C的坐标; (Ⅱ)若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式,并确定y的取值范围; (Ⅲ)若折叠后点B落在边OA上的点为B″,且使B″D∥OB,求此时点C的坐标. |
27. 难度:中等 | |
如图,已知正比例函数和反比例函数的图象都经过点A(3,3). (1)求正比例函数和反比例函数的解析式; (2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式; (3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的二次函数的解析式; (4)在第(3)问的条件下,二次函数在第一象限的图象上是否存在点E,使四边形OECD的面积S1与四边形OABD的面积S满足:S1=S?若存在,求点E的坐标;若不存在,请说明理由. |
28. 难度:中等 | |
九(1)班数学兴趣小组在社会实践活动中,进行了如下的课题研究:用一定长度的铝合金材料,将它设计成外观为长方形的三种框架,使长方形框架面积最大. 小组讨论后,同学们做了以下三种试验: 请根据以上图案回答下列问题: (1)在图案1中,如果铝合金材料总长度(图中所有黑线的长度和)为6m,当AB为1m,长方形框架ABCD的面积是______m2; (2)在图案2中,如果铝合金材料总长度为6m,设AB为xm,长方形框架ABCD的面积为S=______(用含x的代数式表示);当AB=______m时,长方形框架ABCD的面积S最大;在图案3中,如果铝合金材料总长度为lm,设AB为xm,当AB=______m时,长方形框架ABCD的面积S最大. (3)经过这三种情形的试验,他们发现对于图案4这样的情形也存在着一定的规律.探索:如图案4如果铝合金材料总长度为lm共有n条竖档时,那么当竖档AB多少时,长方形框架ABCD的面积最大. |
29. 难度:中等 | |
如图,抛物线y=ax2+bx-3与x轴交于A,B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线x=1,顶点是M. (1)求抛物线对应的函数表达式; (2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由; (3)设直线y=-x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由; (4)当E是直线y=-x+3上任意一点时,(3)中的结论是否成立(请直接写出结论). |