1. 难度:中等 | |
已知关于x的方程x2-kx-6=0的一个根为x=3,则实数k的值为( ) A.1 B.-1 C.2 D.-2 |
2. 难度:中等 | |
图中几何体的主视图是( ) A. B. C. D. |
3. 难度:中等 | |
有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字为偶数的概率是( ) A. B. C. D. |
4. 难度:中等 | |
如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为( ) A.13 B.14 C.15 D.16 |
5. 难度:中等 | |
反比例函数y=(k≠0)的图象经过点(-2,3),则该反比例函数图象在( ) A.第一,三象限 B.第二,四象限 C.第二,三象限 D.第一,二象限 |
6. 难度:中等 | |
如图,梯形ABCD中,AD∥BC,AC,BD交于点O,则图中面积相等的三角形的对数有( ) A.4对 B.1对 C.2对 D.3对 |
7. 难度:中等 | |
如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c的值为( ) A.0 B.-1 C.1 D.2 |
8. 难度:中等 | |
直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是( ) A. B. C. D. |
9. 难度:中等 | |
如图,直线l与双曲线交于A、C两点,将直线l绕点O顺时针旋转α度角(0°<α≤45°),与双曲线交于B、D两点,则四边形ABCD的形状一定是( ) A.平行四边形 B.矩形 C.菱形 D.正方形 |
10. 难度:中等 | |
如图,三角形ABC和DEF是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF=90°,点B,C,E,F在同一直线上,现从点C,E重合的位置出发,让三角形ABC在直线EF上向右作匀速运动,而DEF的位置不动,设两个三角形重合部分的面积为y,运动的距离为x,下面表示y与x的函数关系的图象大致是( ) A. B. C. D. |
11. 难度:中等 | |
李老师给出了一个函数,甲、乙、丙三位学生分别指出这个函数的一个特征.甲:它的图象经过第一象限;乙:它的图象也经过第二象限;丙:在第一象限内函数值y随x增大而增大.请你写出一个满足上述特征的函数解析式为 . |
12. 难度:中等 | |
等腰三角形ABC中,BC=8,AB、AC的长是关于x的方程x2-10x+m=0的两根,则m的值为 . |
13. 难度:中等 | |
如图,在▱ABCD中,BD为对角线,E、F分别是AD、BD的中点,连接EF.若EF=3,则CD的长为 . |
14. 难度:中等 | |
在一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球,记下颜色后,再放回暗箱,通过大量的重复试验后发现,摸到红球的频率稳定在25%.那么估计a大约有 个. |
15. 难度:中等 | |
长为4m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了 m. |
16. 难度:中等 | |
用配方法解方程:2x2+1=3x. |
17. 难度:中等 | |
如图,经过某十字路口的汽车,它可能选择道路A,可能选择道路B,也可能选择道路C,且三种可能性大小相同,现有甲、乙二辆汽车同向同时到达同一路口. (1)请用列表法或树形图,分析二辆车选择道路行驶的所有可能的结果; (2)求二辆车经过该十字路口时,选择道路相同的概率及选择道路不相同的概率. |
18. 难度:中等 | |
如图,晚上,小亮在广场上乘凉.图中线段AB表示站在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯. (1)请你在图中画出小亮在照明灯(P)照射下的影子; (2)如果灯杆高PO=12m,小亮的身高AB=1.6m,小亮与灯杆的距离BO=13m,请求出小亮影子的长度. |
19. 难度:中等 | |
如图,抛物线y1=-x2+2向右平移1个单位得到抛物线y2,回答下列问题: (1)抛物线y2的顶点坐标______; (2)阴影部分的面积S=______; (3)若再将抛物线y2绕原点O旋转180°得到抛物线y3,求抛物线y3的解析式. |
20. 难度:中等 | |
如图1是工人将货物搬运上货车常用的方法,把一块木板斜靠在货车车厢的尾部,形成一个斜坡,货物通过斜坡进行搬运.根据经验,木板与地面的夹角为20°(即图2中∠ACB=20°)时最为合适,已知货车车厢底部到地面的距离AB=1.5m,木板超出车厢部分AD=0.5m,请求出木板CD的长度? (参考数据:sin20°≈0.3420,cos20°≈0.9397,精确到0.1m) |
21. 难度:中等 | |
如图,在平行四边形ABCD中,对角线AC,BD相交于点O,若E,F是AC上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为1cm/s. (1)当E与F不重合时,四边形DEBF是平行四边形吗?说明理由; (2)若BD=12cm,AC=16cm,当运动时间t为何值时,以D、E、B、F为顶点的四边形是矩形? |
22. 难度:中等 | |||||||||||||||||||||||||||||
如图1是某段河床横断面的示意图.查阅该河段的水文资料,得到下表中的数据:
(2)①填写下表:
(3)当水面宽度为36米时,一艘吃水深度(船底部到水面的距离)为1.8米的货船能否在这个河段安全通过?为什么? |
23. 难度:中等 | |
如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是Rt△ABC和Rt△BED边长,易知,这时我们把关于x的形如的一元二次方程称为“勾系一元二次方程”. 请解决下列问题: (1)写出一个“勾系一元二次方程”; (2)求证:关于x的“勾系一元二次方程”必有实数根; (3)若x=-1是“勾系一元二次方程”的一个根,且四边形ACDE的周长是6,求△ABC面积. |
24. 难度:中等 | |
锐角△ABC中,BC=6,S△ABC=12,两动点M,N分别在边AB,AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(y>0) (1)△ABC中边BC上高AD=______; (2)当x=______时,PQ恰好落在边BC上(如图1); (3)当PQ在△ABC外部时(如图2),求y关于x的函数关系式(注明x的取值范围),并求出x为何值时y最大,最大值是多少? |
25. 难度:中等 | |
如图,已知直线y=x与双曲线交于A,B两点,且点A的横坐标为4. (1)求k的值; (2)若双曲线上一点C的纵坐标为8,求△AOC的面积; (3)过原点O的另一条直线l交双曲线于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标. |