1. 难度:中等 | |
下列命题中正确的是( ) A.矩形的对角线相互垂直 B.菱形的对角线相等 C.平行四边形是轴对称图形 D.等腰梯形的对角线相等 |
2. 难度:中等 | |
今年我国发现的首例甲型H1N1流感确诊病例在成都某医院隔离观察,要掌握他在一周内的体温是否稳定,则医生需了解这位病人7天体温的( ) A.众数 B.方差 C.平均数 D.频数 |
3. 难度:中等 | |
若,则a与3的大小关系是( ) A.a<3 B.a≤3 C.a>3 D.a≥3 |
4. 难度:中等 | |
一元二次方程x2+x-1=0的根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.无法判断 |
5. 难度:中等 | |
如图,AB是⊙O的直径,C,D为圆上两点,∠AOC=130°,则∠D等于( ) A.25° B.30° C.35° D.50° |
6. 难度:中等 | |
某商品连续两次降价,每次都降20%后的价格为m元,则原价是( ) A.元 B.1.2m元 C.元 D.0.82m元 |
7. 难度:中等 | |
如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,则拱桥的半径为( ) A.6.5米 B.9米 C.13米 D.15米 |
8. 难度:中等 | |
如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=( ) A.130° B.100° C.50° D.65° |
9. 难度:中等 | |
在平面直角坐标系中,将二次函数y=2x2的图象向上平移2个单位,所得图象的解析式为( ) A.y=2x2-2 B.y=2x2+2 C.y=2(x-2)2 D.y=2(x+2)2 |
10. 难度:中等 | |
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论①a+b+c<0;②a-b+c<0;③b+2a<0;④abc>0,其中正确的个数是( ) A.1个 B.2个 C.3个 D.4个 |
11. 难度:中等 | |
等腰三角形一边长为8cm,另一边长为4cm,则它的周长为 cm. |
12. 难度:中等 | |
使在实数范围内有意义的x应满足的条件是 . |
13. 难度:中等 | |
已知关于x的方程kx2-x-2=0的一个根为2,则k= . |
14. 难度:中等 | |
方程x2-5x=0的解是 |
15. 难度:中等 | |
如图:⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点,若OP的长为整数,则满足条件的点P有 个. |
16. 难度:中等 | |
两圆的半径分别为3cm和4cm,圆心距为2cm.那么这两圆的位置关系是 . |
17. 难度:中等 | |
抛物线y=-2x2+8x-1的顶点坐标为 . |
18. 难度:中等 | |
已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+b(k≠0)的图象相交于点A(-2,4),B(8,2)(如图所示),则能使y1>y2成立的x的取值范围是 . |
19. 难度:中等 | |
计算: |
20. 难度:中等 | |
用配方法解方程:2x2+1=3x. |
21. 难度:中等 | |
为了让广大青少年学生走向操场,走进自然,走到阳光下,积极参加体育锻炼,我国启动了“全国亿万学生阳光体育运动”.小明和小亮在课外活动中,报名参加了短跑训练小组.在近几次百米训练中,所测成绩如图所示,请根据图中所示解答以下问题. (1)请根据图中信息,补全下面的表格; (2)分别计算他们的平均数、极差和方差填入右表格,若你是他们的教练,将小明与小亮的成绩比较后,你将分别给予他们怎样的建议? |
22. 难度:中等 | |
如图,四边形ABCD是菱形,CE⊥AB交AB延长线于E,CF⊥AD交AD延长线于F,请猜想,CE和CF的大小有什么关系?并证明你的猜想. |
23. 难度:中等 | |
如图,⊙O是Rt△ABC的外接圆,点O在AB上,BD⊥AB,点B是垂足,OD∥AC,连接CD. 求证:CD是⊙O的切线. |
24. 难度:中等 | |
某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台? |
25. 难度:中等 | |
某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题: (1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围; (2)当降价多少元时,每星期的利润最大?最大利润是多少? (3)请画出上述函数的大致图象. |
26. 难度:中等 | |
阅读下列材料,然后回答问题. 在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简: ==;(一) =(二) ==(三) 以上这种化简的步骤叫做分母有理化. 还可以用以下方法化简: =(四) (1)请用不同的方法化简. ①参照(三)式得=( ); ②参照(四)式得=( ) (2)化简:. |
27. 难度:中等 | |
问题探究: (1)如图①所示是一个半径为,高为4的圆柱体和它的侧面展开图,AB是圆柱的一条母线,一只蚂蚁从A点出发沿圆柱的侧面爬行一周到达B点,求蚂蚁爬行的最短路程.(探究思路:将圆柱的侧面沿母线AB剪开,它的侧面展开图如图①中的矩形ABB′A′,则蚂蚁爬行的最短路程即为线段AB′的长); (2)如图②所示是一个底面半径为,母线长为4的圆锥和它的侧面展开图,PA是它的一条母线,一只蚂蚁从A点出发沿圆锥的侧面爬行一周后回到A点,求蚂蚁爬行的最短路程; (3)如图③所示,在②的条件下,一只蚂蚁从A点出发沿圆锥的侧面爬行一周到达母线PA上的一点,求蚂蚁爬行的最短路程. |
28. 难度:中等 | |
如左图,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),OB=OC,tan∠ACO=. (1)求这个二次函数的表达式. (2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由. (3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度. (4)如图,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积. |