1. 难度:中等 | |
如图,秋千拉绳长AB为3米,静止时踩板离地面0.5米,小朋友荡该秋千时,秋千在最高处时踩板离地面2米(左右对称),请计算该秋千所荡过的圆弧长? |
2. 难度:中等 | |
一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走的路径长度是多少? |
3. 难度:中等 | |
如图,菱形ABCD的边长为6,∠BAD=60°,AC为对角线.将△ACD绕点A逆时针旋转60°得到△AC′D′,连接DC′. (1)求证:△ADC≌△ADC′; (2)求在旋转过程中点C扫过路径的长.(结果保留π) |
4. 难度:中等 | |
如图,有一直径是1cm的圆形铁皮,要从中剪出一个最大的圆心角是90°的扇形CAB. (1)被剪掉的阴影部分的面积是多少? (2)若用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少(结果可用根号表示). |
5. 难度:中等 | |
如图,已知在⊙O中,AB=4,AC是⊙O的直径,AC⊥BD于F,∠A=30度. (1)求图中阴影部分的面积; (2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径. |
6. 难度:中等 | |
如图,线段AB与⊙O相切于点C,连接OA,OB,OB交⊙O于点D,已知OA=OB=6,AB=6. (1)求⊙O的半径; (2)求图中阴影部分的面积. |
7. 难度:中等 | |
如图,在平面直角坐标系中,等腰Rt△OAB斜边OB在y轴上,且OB=4. (1)画出△OAB绕原点O顺时针旋转90°后得到的三角形; (2)求线段OB在上述旋转过程中所扫过部分图形的面积(即旋转前后OB与点B轨迹所围成的封闭图形的面积). |
8. 难度:中等 | |
如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,连接AC,BD. (1)求证:AC=BD; (2)若图中阴影部分的面积是πcm2,OA=2cm,求OC的长. |
9. 难度:中等 | |
如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABO的三个顶点A,B,O都在格点上. (1)画出△ABO绕点O逆时针旋转90°后得到的三角形; (2)求△ABO在上述旋转过程中所扫过的面积. |
10. 难度:中等 | |
如图,AB为⊙O的直径,CD⊥AB于点E,交⊙O于点D,OF⊥AC于点F. (1)请写出三条与BC有关的正确结论; (2)当∠D=30°,BC=1时,求圆中阴影部分的面积. |
11. 难度:中等 | |
如图,已知点A,B,C,D均在已知圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10cm. (1)求此圆的半径; (2)求图中阴影部分的面积(其中л≈3,≈1.7). |
12. 难度:中等 | |
如图,从一个直径是2的圆形铁皮中剪下一个圆心角为90°的扇形 (1)求这个扇形的面积(结果保留π) (2)在剩下的三块余料中,能否从第③块余料中剪出一个圆作为底面与此扇形围成一个圆锥?请说明理由 (3)当⊙O的半径R(R>0)为任意值时,(2)中的结论是否仍然成立?请说明理由. |
13. 难度:中等 | |
如图,已知△ABC,AC=BC=6,∠C=90度.O是AB的中点,⊙O与AC相切于点D、与BC相切于点E.设⊙O交OB于F,连DF并延长交CB的延长线于G. (1)∠BFG与∠BGF是否相等?为什么? (2)求由DG、GE和弧ED所围成图形的面积.(阴影部分) |
14. 难度:中等 | |
正方形OCED与扇形OAB有公共顶点0,分别以OA,0B所在直线为x轴,y轴建立平面直角坐标系.如图所示.正方形两个顶点C、D分别在x轴、y轴正半轴上移动.设OC=x,OA=3 (1)当x=1时,正方形与扇形不重合的面积是______;此时直线CD对应的函数关系式是______; (2)当直线CD与扇形OAB相切时.求直线CD对应的函数关系式; (3)当正方形有顶点恰好落在上时,求正方形与扇形不重合的面积. |
15. 难度:中等 | |
如图,从一个半径为1的圆形铁皮中剪下一个圆心角为90°的扇形BAC. (1)求这个扇形的面积; (2)若将扇形BAC围成一个圆锥的侧面,这个圆锥的底面直径是多少?能否从最大的余料③中剪出一个圆做该圆锥的底面?请说明理由. |
16. 难度:中等 | |
如图线段AB的端点在边长为1的正方形网格的格点上,现将线段AB绕点A按逆时针方向旋转90°得到线段AC. (1)请你用尺规在所给的网格中画出线段AC及点B经过的路径; (2)若将此网格放在一平面直角坐标系中,已知点A的坐标为(1,3),点B的坐标为(-2,-1),则点C的坐标为______; (3)线段AB在旋转到线段AC的过程中,线段AB扫过的区域的面积为______; (4)若有一张与(3)中所说的区域形状相同的纸片,将它围成一个几何体的侧面,则该几何体底面圆的半径长为______. |
17. 难度:中等 | |
铁匠王老五要制作一个圆锥体模型,操作规则是:在一块边长为16cm的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.他们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切)请你帮助他算一算可以吗? (1)请说明方案一不可行的理由; (2)判断方案二是否可行?若可行,请确定圆锥的母线长及其底面圆半径;若不可行,请说明理由. |
18. 难度:中等 | |
如图,这是一个由圆柱体材料加工而成的零件,它是以圆柱体的上底面为底面,在其内部“掏取”一个与圆柱体等高的圆锥体而得到的,其底面直径AB=12cm,高BC=8cm,求这个零件的表面积.(结果保留π) |
19. 难度:中等 | |
下图是一纸杯,它的母线AC和EF延长后形成的立体图形是圆锥.该圆锥的侧面展开图形是扇形OAB.经测量,纸杯上开口圆的直径为6cm,下底面直径为4cm,母线长EF=8cm.求扇形OAB的圆心角及这个纸杯的表面积.(面积计算结果用π表示). |
20. 难度:中等 | |
已知扇形的圆心角为120°,面积为300πcm2. (1)求扇形的弧长; (2)若将此扇形卷成一个圆锥,则这个圆锥的轴截面面积为多少? |
21. 难度:中等 | |
已知圆锥的底面半径为r=20cm,高h=cm,现在有一只蚂蚁从底边上一点A出发.在侧面上爬行一周又回到A点,求蚂蚁爬行的最短距离. |
22. 难度:中等 | |
在圣诞节,小明自己动手用纸板制作圆锥形的圣诞老人帽.圆锥帽底面直径为18cm,母线长为36cm,请你计算制作一个这样的圆锥帽需用纸板的面积.(精确到个位) |
23. 难度:中等 | |
小丽要制作一个圆锥模型,要求圆锥的母线长为9cm,底面圆的直径为10cm,那么小丽要制作的这个圆锥模型的侧面展开扇形的纸片的圆心角是多少度制成的?圆锥模型的全面积是多少? |
24. 难度:中等 | |
高晗和吴逸君两同学合作,将半径为1m、圆心角为90°的扇形薄铁板围成一个圆锥筒,在计算圆锥的容积(接缝忽略不计)时,吴逸君认为圆锥的高就等于扇形的圆心O到弦AB的距离OC(如图),高晗说这样计算不正确.你同意谁的说法?把正确的计算过程写出来. |
25. 难度:中等 | |
如图,扇形OAB的圆心角为120°,半径为6cm. (1)请用尺规作出扇形的对称轴(不写作法,但应保留作图痕迹); (2)若将此扇形围成一个圆锥的侧面(不计接缝),求圆锥的高. |
26. 难度:中等 | |
如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A,B,C请在网格图中进行下列操作: (1)请在图中确定该圆弧所在圆的圆心D的位置,D点坐标为______; (2)连接AD,CD,则⊙D的半径为______(结果保留根号),扇形DAC的圆心角度数为______; (3)若扇形DAC是某一个圆锥的侧面展开图,则该圆锥的底面半径为______(结果保留根号). |
27. 难度:中等 | |
课堂上,师生一起探究知,可以用己知半径的球去测量圆柱形管子的内径.小明回家后把半径为5cm的小皮球置于保温杯口上,经过思考找到了测量方法,并画出了草图(如图).请你根据图中的数据,帮助小明计算出保温杯的内径. |
28. 难度:中等 | |
从卫生纸的包装纸上得到以下资料:两层300格,每格11.4cm×11cm,如图甲.用尺量出整卷卫生纸的半径(R)与纸筒内芯的半径(r),分别为5.8cm和2.3cm,如图乙.那么该两层卫生纸的厚度为多少cm?(π取3.14,结果精确到0.001cm) |
29. 难度:中等 | |
在平面直角坐标系中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图). (1)求边OA在旋转过程中所扫过的面积; (2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数; (3)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论. |
30. 难度:中等 | |
在边长为1的方格纸中建立直角坐标系xoy,O、A、B三点均为格点. (1)直接写出线段OB的长; (2)将△OAB绕点O沿逆时针方向旋转90°得到△OA′B′.请你画出△OA′B′,并求在旋转过程中,点B所经过的路径的长度. |