1. 难度:中等 | |
小颖为九年级1班毕业联欢会设计了一个“配紫色”的游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.游戏者同时转动两个转盘,两个转盘停止转动时,若有一个转盘的指针指向蓝色,另一个转盘的指针指向红色,则“配紫色”成功,游戏者获胜.求游戏者获胜的概率. |
2. 难度:中等 | |
田忌赛马是一个为人熟知的故事.传说战国时期,齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出-匹,每匹马赛一次,赢得两局者为胜,看样子田忌似乎没有什么胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、下等马要强… (1)如果齐王将马按上中下的顺序出阵比赛,那么田忌的马如何出阵,田忌才能取胜? (2)如果齐王将马按上中下的顺序出阵,而田忌的马随机出阵比赛,田忌获胜的概率是多少?(要求写出双方对阵的所有情况) |
3. 难度:中等 | |
某电脑公司现有A、B、C三种型号的甲品牌电脑和D,E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑. (1)写出所有选购方案(利用树状图或列表方法表示); (2)如果(1)中各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少? (3)现知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有几台. |
4. 难度:中等 | |
口袋里装有大小相同的卡片4张,且分别标有数字1,2,3,4.从口袋里抽取一张卡片不放回,再抽取一张.请你用列举法(列表或画树状图)分析并求出两次取出的卡片上的数字之和为偶数的概率. |
5. 难度:中等 | |
在科技馆里,小亮看见一台名为帕斯卡三角的仪器,如图所示,当一实心小球从入口落下,它在依次碰到每层菱形挡块时,会等可能地向左或向右落下. (1)试问小球通过第二层A位置的概率是多少? (2)请用学过的数学方法模拟试验,并具体说明小球下落到第三层B位置和第四层C位置处的概率各是多少? |
6. 难度:中等 | |
如图,小明、小华用4张扑克牌玩游戏,他俩将扑克牌洗匀后,背面朝上放置于桌面上,小明先抽,小华后抽,抽出的牌不放回. (1)若小明恰好抽到了黑桃4. ①请在右边框中绘制这种情况的树形图; ②求小华抽出的牌的牌面数字比4大的概率. (2)小明、小华约定:若小明抽到的牌的牌面数字比小华的大,则小明胜;反之,则小明负.你认为这个游戏公平吗?说明你的理由. |
7. 难度:中等 | |
某校八年级将举行班级乒乓球对抗赛,每个班必须选派出一对男女混合双打选手参赛.八年级一班准备在小娟、小敏、小华三名女选手和小明、小强两名男选手中,选男、女选手各一名组成一对参赛,一共能够组成哪几对如果小敏和小强的组合是最强组合,那么采用随机抽签的办法,恰好选出小敏和小强参赛的概率是多少? |
8. 难度:中等 | |
下图是由转盘和箭头组成的两个装置,装置A、B的转盘分别被分成三个面积相等的扇形,装置A上的数字分别是1,6,8,装置B上的数字分别是4,5,7,这两个装置除了表面数字不同外,其它构造完全相同.现在你和另外一个人分别同时用力转动A、B两个转盘中的箭头,如果我们规定箭头停留在较大数字的一方获胜(若箭头恰好停留在分界线上,则重新转动一次,直到箭头停留在某一数字为止),那么你会选择哪个装置呢?请借助列表法或树状图法说明理由. |
9. 难度:中等 | |
把大小和形状-模一样的6张卡片分成两组,每组3张,分别标上数字1,2,3.将这两组卡片分别放入两盒子中搅匀,再从中各随机抽取一张,试求取出的两张卡片数字之和为偶数的概率(要求用树状图或列表法求解). |
10. 难度:中等 | |
将分别标有数字1,1,2,3的四张卡片洗匀后,背面朝上放在桌面上 (1)任意抽取一张卡片,求抽到卡片上的数字是奇数的概率; (2)任意抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,请你列表或画树状图分析并求出组成的两位数中恰好是13的概率. |
11. 难度:中等 | |
据《重庆晨报》,2007年,重庆市市被国家评为无偿献血先进城市,医疗临床用血实现了100%来自市民自愿献血,无偿献血总量6.5吨,居全国第三位. 现有小莉,小罗,小强三个自愿献血者,两人血型为O型,一人血型为A型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所抽血的血型均为O型的概率.(要求:用列表或画树状图的方法解答) |
12. 难度:中等 | |
你喜欢玩游戏吗现请你玩一个转盘游戏.如图所示的两个转盘中指针落在每一个数字上的机会均等,现同时自由转动甲乙两个转盘,转盘停止后,指针各指向一个数字,用所指的两个数字作乘积.请你: (1)列举(用列表或画树状图)所有可能得到的数字之积; (2)求出数字之积为奇数的概率. |
13. 难度:中等 | |
如图是从一副扑克牌中取出的两组牌,分别是黑桃1,2,3,4和方块1,2,3,4.将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和等于5的概率是______. |
14. 难度:中等 | |
请你依据右面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘: (1)用树状图表示出所有可能的寻宝情况; (2)求在寻宝游戏中胜出的概率. |
15. 难度:中等 | |
现有一项资助贫困生的公益活动由你来主持,每位参与者需交赞助费5元,活动规则如下:如图是两个可以自由转动的转盘,每个转盘被分成6个相等的扇形,参与者转动这两个转盘,转盘停止后,指针各自指向一个数字,(若指针在分格线上,则重转一次,直到指针指向某一数字为止),若指针最后所指的数字之和为12,则获得一等奖,奖金20元;数字之和为9,则获得二等奖,奖金10元;数字之和为7,则获得三等奖,奖金为5元;其余均不得奖;此次活动所集到的赞助费除支付获奖人员的奖金外,其余全部用于资助贫困生的学习和生活; (1)分别求出此次活动中获得一等奖、二等奖、三等奖的概率; (2)若此次活动有2000人参加,活动结束后至少有多少赞助费用于资助贫困生? |
16. 难度:中等 | |
袋中有一个红球和两个白球,它们除了颜色外都相同,任意摸出一个球,记下球的颜色,放回袋中,搅匀后再任意摸出一个球,记下球的颜色.为了研究两次摸球出现某种情况的概率,画出如下树状图. (1)请把树状图填写完整. (2)根据树状图可知摸到一红一白两球的概率是______. |
17. 难度:中等 | |
两人要去某风景区游玩,每天某一时段开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度,也不知道汽车开过来的顺序.两人采用了不同的乘车方案: 甲无论如何总是上开来的第一辆车.而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况.如果第二辆车的状况比第一辆好,他就上第二辆车;如果第二辆不比第一辆好,他就上第三辆车. 如果把这三辆车的舒适程度分为上、中、下三等,请尝试着解决下面的问题: (1)三辆车按出现的先后顺序共有哪几种不同的可能? (2)你认为甲、乙两人采用的方案,哪一种方案使自己乘坐上等车的可能性大,为什么? |
18. 难度:中等 | |
小刚很擅长球类运动,课外活动时,足球队、篮球队都力邀他到自己的阵营,小刚左右为难,最后决定通过掷硬币来确定.游戏规则如下:连续抛掷硬币三次,如果三次正面朝上或三次反面朝上,则由小刚任意挑选两球队;如果两次正面朝上一次正面朝下,则小刚加入足球阵营;如果两次反面朝上一次反面朝下,则小刚加入篮球阵营. (1)用画树状图的方法表示三次抛掷硬币的所有结果; (2)小刚任意挑选两球队的概率有多大? (3)这个游戏规则对两个球队是否公平?为什么? |
19. 难度:中等 | |
“清明节”前夕,我县某校决定从八年级(一)班、(二)班中选一个班去杨闇公烈士陵园扫墓,为了公平,有同学设计了一个方法,其规则如下:在一个不透明的盒子里装有形状、大小、质地等完全相同的3个小球,把它们分别标上数字1、2、3,由(一)班班长从中随机摸出一个小球,记下小球上的数字;在一个不透明口袋中装有形状、大小、质地等完全相同的4个小球,把它们分别标上数字1、2、3、4,由(二)班班长从口袋中随机摸出一个小球,记下小球上的数字,然后计算出这两个数字的和,若两个数字的和为奇数,则选(一)班去;若两个数字的和为偶数,则选(二)班去. (1)用树状图或列表的方法求八年级(一)班被选去扫墓的概率; (2)你认为这个方法公平吗?若公平,请说明理由;若不公平,请设计一个公平的方法. |
20. 难度:中等 | |
学校奖励给王伟和李丽上海世博园门票共两张,其中一张为指定日门票,另一张为普通日门票.班长由王伟和李丽分别转动下图的甲、乙两个转盘(转盘甲被二等分、转盘乙被三等分)确定指定日门票的归属,在两个转盘都停止转动后,若指针所指的两个数字之和为偶数,则王伟获得指定日门票;若指针所指的两个数字之和为奇数,则李丽获得指定日门票;若指针指向分隔线,则重新转动.你认为这个方法公平吗?请画树状图或列表,并说明理由. |
21. 难度:中等 | |
“五•一”期间,某书城为了吸引读者,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:读者每购买100元的书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么读者就可以分别获得45元、30元、25元的购书券,凭购书券可以在书城继续购书,如果读者不愿意转转盘,那么可以直接获得10元的购书券. (1)写出转动一次转盘获得45元购书券的概率; (2)转转盘和直接获得购书券,你认为哪种方式对读者更合算?请说明理由. |
22. 难度:中等 | |
袋子中装有2个红球,1个黄球,它们除颜色外其余都相同.小明和小英做摸球游戏,约定一次游戏规则是:小英先从袋中任意摸出1个球记下颜色后放回,小明再从袋中摸出1个球记下颜色后放回,如果两人摸到的球的颜色相同,小英赢,否则小明赢. (1)请用树状图或列表格法表示一次游戏中所有可能出现的结果; (2)这个游戏规则对双方公平吗?请说明理由. |
23. 难度:中等 | |
如图所示,甲、乙两人玩游戏,他们准备了1个可以自由转动的转盘和一个不透明的袋子.转盘被分成面积相等的三个扇形,并在每一个扇形内分别标上数字-1,-2,-3;袋子中装有除数字以外其它均相同的三个乒乓球,球上标有数字1,2,3.游戏规则:转动转盘,当转盘停止后,指针所指区域的数字与随机从袋中摸出乒乓球的数字之和为0时,甲获胜;其它情况乙获胜.(如果指针恰好指在分界线上,那么重转一次,直到指针指向某一区域为止) (1)用树状图或列表法求甲获胜的概率; (2)这个游戏规则对甲乙双方公平吗?请判断并说明理由. |
24. 难度:中等 | |
有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字1,2,3的卡片.小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算小球和卡片上的两个数的积. (1)请你用列表或画树状图的方法,求摸出的这两个数的积为6的概率; (2)小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢.你认为该游戏公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平. |
25. 难度:中等 | |
桌面上有4张背面相同的卡片,正面分别写着数字“1”、“2”、“3”、“4”.先将卡片的背面朝上洗匀. (1)如果让小唐从中任意抽取一张,抽到奇数的概率是______; (2)如果让小唐从中任意抽取两张,游戏规则规定:抽到的两张卡片上的数字之和为奇数,则小唐胜,否则小谢胜.你认为这个游戏公平吗?说出你的理由. |
26. 难度:中等 | |
小敏的爸爸买了某项体育比赛的一张门票,她和哥哥两人都很想去观看.可门票只有一张,读九年级的哥哥想了一个办法,拿了8张扑克牌,将数字为2,3,5,9的四张牌给小敏,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小敏和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小敏去;如果和为奇数,则哥哥去. (1)请用画树形图或列表的方法求小敏去看比赛的概率; (2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则. |
27. 难度:中等 | |
现有一本故事书,姐妹俩商定通过摸球游戏定输赢(赢的一方先看),游戏规则是:用4个完全相同的小球,分别表上1、2、3、4后放进一个布袋内,先由姐姐从布袋中任意摸出一个小球,记下小球的标号后放回并摇匀,再由妹妹任意摸出一个小球,若两人摸出的小球标号之积为偶数,则姐姐赢,两人摸出的小球标号之积为奇数,则妹妹赢.这个游戏规则对双方公平吗?请利用树状图或列表法说明理由. |
28. 难度:中等 | |
在一副扑克牌中取牌面花色分别为黑桃、红心、方块各一张,洗匀后正面朝下放在桌面上. (1)从这三张牌中随机抽取一张牌,抽到牌面花色为红心的概率是多少? (2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面花色后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面花色.当两张牌的花色相同时,小王赢;当两张牌面的花色不相同时,小李赢.请你利用树状图或列表法分析该游戏规则对双方是否公平?并说明理由. |
29. 难度:中等 | |
分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘. (1)试用列表或画树状图的方法,求欢欢获胜的概率; (2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由. |
30. 难度:中等 | |
我市第四高级中学与第六高级中学之间进行一场足球比赛,邀请某校两位体育老师及九年级足球迷当裁判.九年级的一位足球迷设计了开球方式. (1)两位体育老师各掷一枚一元硬币,两枚硬币落地后正面朝上第四高级中学开球,否则第六高级中学开球.请用树状图或列表的方法,求第四高级中学开球的概率; (2)九年级的另一位足球迷发现前面设计的开球方式不合理,他修改规则:如果两枚硬币都朝上时,第四高级中学得8分,否则第六高级中学得4分,根据概率计算,谁的得分高,谁开球.你认为修改后的规则公平吗?请说明理由;若不公平,请你设计对双方公平的开球方式. |