1. 难度:中等 | |
赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为 米. |
2. 难度:中等 | |
晚上,身高1.6米的小华站在D处(如图),测得他的影长DE=1.5米,BD=4.5米,那么灯到地面的距离AB= 米. |
3. 难度:中等 | |
数学兴趣小组想测量一棵树的高度,在阳光下,一名同学测得一根长为1米的竹竿的影长为0.8米.同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),其影长为1.2米,落在地面上的影长为2.4米,则树高为 米. |
4. 难度:中等 | |
如图,为测量学校旗杆的高度,小东用长为3.2m的竹竿做测量工具.移动竹竿使竹竿,旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为 m. |
5. 难度:中等 | |
某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为 米. |
6. 难度:中等 | |
在阳光下,同一时刻的物高与影长成比例.如果一旗杆在地面上的影长为20m,同时,高为1.5m的测竿的影长为2.5m,那么旗杆的高是 m. |
7. 难度:中等 | |
如图所示为农村一古老的捣碎器,已知支撑柱AB的高为0.3米,踏板DE长为1.6米,支撑点A到踏脚D的距离为0.6米,现在踏脚着地,则捣头点E上升了 米. |
8. 难度:中等 | |
在同一时刻,小明测得1米的杆子影长为1.6米,一棵树的影长是4.5米,则这棵树的高度为 米. |
9. 难度:中等 | |
小明自制了一个翘翘板,它的左、右臂OA、OB的长分别为1米、2米.如图所示,当点B经过的路径长为1米时,点A经过的路径长为 米. |
10. 难度:中等 | |
高为2米的院墙正东方有一棵樟树,且与院墙相距3米,上午的太阳和煦灿烂,樟树影子爬过院墙,伸出院墙影子外1米,此时人的影子恰好是人身高的两倍,那么,请你计算这棵樟树的高约为 米. |
11. 难度:中等 | |
如图,已知李明的身高为1.8m,他在路灯下的影长为2m,李明距路灯杆底部为3m,则路灯灯泡距地面的高度为 m. |
12. 难度:中等 | |
为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜子放在离树底(B)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树(AB)的高度为 米. |
13. 难度:中等 | |
如图,在同一时刻,小明测得他的影长为1米,距他不远处的一棵槟榔树的影长为5米,已知小明的身高为1.5米,则这棵槟榔树的高是 米. |
14. 难度:中等 | |
在某时刻的阳光照耀下,身高160cm的阿美的影长为80cm,她身旁的旗杆影长10m,则旗杆高为 m. |
15. 难度:中等 | |
如图,火焰的光线穿过小孔O,在竖直的屏幕上形成倒立的实像,像的高度为1.5cm,OA=48cm,OC=16cm,则火焰的高度是 cm. |
16. 难度:中等 | |
如图所示,某校宣传栏后面2米处种了一排树,每隔2米一棵,共种了6棵,小勇站在距宣传栏中间位置的垂直距离3米处,正好看到两端的树干,其余的4棵均被挡住,那么宣传栏的长为 米.(不计宣传栏的厚度) |
17. 难度:中等 | |
如图,小华为了测量所住楼房的高度,他请来同学帮忙,测量了同一时刻他自己的影长和楼房的影长分别是0.5米和15米.已知小华的身高为1.6米,那么他所住楼房的高度为 米. |
18. 难度:中等 | |
在同一时刻,1米高的竹竿影长为1.5米,那么影长为18米的楼的高度为 米. |
19. 难度:中等 | |
同一时刻,高为1.5m标杆影长为2.5m,一古塔在地面的影长为50m,那么古塔的高为 m. |
20. 难度:中等 | |
如图,身高1.6m的小华站在距路灯杆5m的C点处,测得她在灯光下的影长CD为2.5m,则路灯的高度AB为 m. |
21. 难度:中等 | |
如图,小明从路灯下,向前走了5米,发现自己在地面上的影子长DE是2米.如果小明的身高为1.6米,那么路灯高地面的高度AB是 米. |
22. 难度:中等 | |
吕晓同学想利用树影的长测量校园内一棵大树的高度,他在某一时刻测得一棵小树的高为1.5米,其影长为1.2米,同时,他测得这棵大树的影长为3米,则这棵大树的实际高度为 米. |
23. 难度:中等 | |
如图,铁道口栏杆的短臂长为1.2m,长臂长为8m,当短臂端点下降0.6m时,长臂端点升高 m(杆的粗细忽略不计). |
24. 难度:中等 | |
已知小明同学身高1.5米,经太阳光照射,在地面的影长为2米,若此时测得一塔在同一地面的影长为60米,则塔高应为 米. |
25. 难度:中等 | |
如图所示.某校计划将一块形状为锐角三角形ABC的空地进行生态环境改造.已知△ABC的边BC长120米,高AD长80米.学校计划将它分割成△AHG、△BHE、△GFC和矩形EFGH四部分(如图).其中矩形EFGH的一边EF在边BC上.其余两个顶点H、G分别在边AB、AC上.现计划在△AHG上种草,每平方米投资6元;在△BHE、△FCG上都种花,每平方米投资10元;在矩形EFGH上兴建爱心鱼池,每平方米投资4元. (1)当FG长为多少米时,种草的面积与种花的面积相等? (2)当矩形EFGH的边FG为多少米时,△ABC空地改造总投资最小,最小值为多少? |
26. 难度:中等 | |
已知:直线a∥b,P、Q是直线a上的两点,M、N是直线b上两点. (1)如图①,线段PM、QN夹在平行直线a和b之间,四边形PMNQ为等腰梯形,其两腰PM=QN.请你参照图①,在图②中画出异于图①的一种图形,使夹在平行直线a和b之间的两条线段相等; (2)我们继续探究,发现用两条平行直线a、b去截一些我们学过的图形,会有两条“曲线段相等”(曲线上两点和它们之间的部分叫做“曲线段”.把经过全等变换后能重合的两条曲线段叫做“曲线段相等”).请你在图③中画出一种图形,使夹在平行直线a和b之间的两条曲线段相等; (3)如图④,若梯形PMNQ是一块绿化地,梯形的上底PQ=m,下底MN=n,且m<n.现计划把价格不同的两种花草种植在S1、S2、S3、S4四块地里,使得价格相同的花草不相邻.为了节省费用,园艺师应选择哪两块地种植价格较便宜的花草?请说明理由. |
27. 难度:中等 | |
(A题)某市经济开发区建有B、C、D三个食品加工厂,这三个工厂和开发区A处的自来水厂正好在一个矩形的四个顶点上,它们之间有公路相通,且AB=CD=900米,AD=BC=1700米.自来水公司已经修好一条自来水主管道AN,BC两厂之间的公路与自来水管道交于E处,EC=500米.若自来水主管道到各工厂的自来水管道由各厂负担,每米造价800元. (1)要使修建自来水管道的造价最低,这三个工厂的自来水管道路线应怎样设计并在图形中画出; (2)求出各厂所修建的自来水管道的最低的造价各是多少元? (B题)如图,已知平行四边形ABCD及四边形外一直线l,四个顶点A、B、C、D到直线l的距离分别为a、b、c、d. (1)观察图形,猜想得出a、b、c、d满足怎样的关系式?证明你的结论. (2)现将l向上平移,你得到的结论还一定成立吗?请分情况写出你的结论. |
28. 难度:中等 | |
一块直角三角形木板的一条直角边AB长为1.5m,面积为1.5m2,工人师傅要把它加工成一个面积最大的正方形桌面,请甲、乙两位同学进行设计加工方案,甲设计方案如图1,乙设计方案如图2.你认为哪位同学设计的方案较好?试说明理由.(加工损耗忽略不计,计算结果中可保留分数) |
29. 难度:中等 | |
如图,在△ABC中,BC=1,AC=2,∠C=90度. (1)在方格纸①中,画△A′B′C′,使△A′B′C′∽△ABC,且相似比为2:1; (2)若将(1)中△A′B′C′称为“基本图形”,请你利用“基本图形”,借助旋转、平移或轴对称变换,在方格纸②中设计一个以点O为对称中心,并且以直线l为对称轴的图案. |
30. 难度:中等 | |
如图是一个常见铁夹的侧面示意图,OA,OB表示铁夹的两个面,C是轴,CD⊥OA于点D,已知DA=15mm,DO=24mm,DC=10mm,我们知道铁夹的侧面是轴对称图形,请求出A、B两点间的距离. |