1. 难度:中等 | |
我们知道当人的视线与物体表面互相垂直时的视觉效果最佳.如图是小明站在距离墙壁1.60米处观察装饰画时的示意图,此时小明的眼睛与装饰画底部A处于同一水平线上,视线恰好落在装饰画中心位置E处,且与AD垂直.已知装饰画的高度AD为0.66米, 求:(1)装饰画与墙壁的夹角∠CAD的度数(精确到1°); (2)装饰画顶部到墙壁的距离DC(精确到0.01米). |
2. 难度:中等 | |
小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下: 如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m(点A、E、C在同一直线上).已知小明的身高EF是1.7m,请你帮小明求出楼高AB.(结果精确到0.1m) |
3. 难度:中等 | |
如图,A、B两点分别位于一个池塘的两端,由于受条件限制无法直接度量A、B间的距离.小明利用学过的知识,设计了如下三种测量方法,如图①、②、③所示(图中a,b,c表示长度,α,β,θ表示角度). (1)请你写出小明设计的三种测量方法中AB的长度: 图①AB=______,图②AB=______,图③AB=______; (2)请你再设计一种不同于以上三种的测量方法,画出示意图(不要求写画法),用字母标注需测量的边或角,并写出AB的长度. |
4. 难度:中等 | |
如图,小芳家的落地窗(线段DE)与公路(直线PQ)互相平行,她每天做完作业后都会在点A处向窗外的公路望去. (1)请在图中画出小芳能看到的那段公路并记为BC. (2)小芳很想知道点A与公路之间的距离,于是她想到了一个办法.她测出了邻家小彬在公路BC段上走过的时间为10秒,又测量了点A到窗的距离是4米,且窗DE的长为3米,若小彬步行的平均速度为1.2米/秒,请你帮助小芳计算出点A到公路的距离. |
5. 难度:中等 | |
问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息: 甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm. 乙组:如图2,测得学校旗杆的影长为900cm. 丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求: (1)请根据甲、乙两组得到的信息计算出学校旗杆的高度; (2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602) |
6. 难度:中等 | |
如图,要测量人民公园的荷花池A、B两端的距离,由于条件限制无法直接测得,请你用所学过的数学知识设计出一种测量方案,写出测量步骤.用直尺或圆规画出测量的示意图,并说明理由(写出求解或证明过程). |
7. 难度:中等 | |
亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M,颖颖的头顶B及亮亮的眼睛A恰在一条直线上时,两人分别标定自己的位置C,D.然后测出两人之间的距CD=1.25m,颖颖与楼之间的距离DN=30m(C,D,N在一条直线上),颖颖的身高BD=1.6m,亮亮蹲地观测时眼睛到地面的距离AC=0.8m.你能根据以上测量数据帮助他们求出住宅楼的高度吗? |
8. 难度:中等 | |
阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案. (1)所需的测量工具是:______; (2)请在下图中画出测量示意图; (3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x. |
9. 难度:中等 | |
如图(1)是夹文件用的铁(塑料)夹子在常态下的侧面示意图.AC,BC表示铁夹的两个面,O点是轴,OD⊥AC于D.已知AD=15mm,DC=24mm,OD=10mm.已知文件夹是轴对称图形,试利用图(2),求图(1)中A,B两点的距离(:=26). |
10. 难度:中等 | |
如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米? |
11. 难度:中等 | |
为了加强视力保护意识,小明想在长为3.2米,宽为4.3米的书房里挂一张测试距离为5米的视力表.在一次课题学习课上,小明向全班同学征集“解决空间过小,如何放置视力表问题”的方案,其中甲、乙、丙三位同学设计方案新颖,构思巧妙. (1)甲生的方案:如图1,将视力表挂在墙ABEF和墙ADGF的夹角处,被测试人站立在对角线AC上,问:甲生的设计方案是否可行?请说明理由. (2)乙生的方案:如图2,将视力表挂在墙CDGH上,在墙ABEF上挂一面足够大的平面镜,根据平面镜成像原理可计算得到:测试线应画在距离墙ABEF______米处. (3)丙生的方案:如图3,根据测试距离为5m的大视力表制作一个测试距离为3m的小视力表.如果大视力表中“E”的长是3.5cm,那么小视力表中相应“E”的长是多少cm? |
12. 难度:中等 | |
如图所示,一段街道的两边缘所在直线分别为AB,PQ,并且AB∥PQ.建筑物的一端DE所在的直线MN⊥AB于点M,交PQ于点N.小亮从胜利街的A处,沿着AB方向前进,小明一直站在点P的位置等候小亮. (1)请你在图中画出小亮恰好能看见小明时的视线,以及此时小亮所在位置(用点C标出); (2)已知:MN=20 m,MD=8 m,PN=24 m,求(1)中的点C到胜利街口的距离CM. |
13. 难度:中等 | |
在一次数学活动课上,李老师带领学生去测教学楼的高度.在阳光下,测得身高1.65米的黄丽同学BC的影长BA为1.1米,与此同时,测得教学楼DE的影长DF为12.1米. (1)请你在图中画出此时教学楼DE在阳光下的投影DF. (2)请你根据已测得的数据,求出教学楼DE的高度.(精确到0.1米) |
14. 难度:中等 | |
王大伯要做一张如图1的梯子,梯子共有8级互相平行的踏板,每相邻两级踏板之间的距离都相等.已知梯子最上面一级踏板的长度A1B1=0.5m,最下面一级踏板的长度A8B8=0.8m.木工师傅在制作这些踏板时,截取的木板要比踏板长,以保证在每级踏板的两个外端各做出一个长为4cm的榫头(如图2所示),以此来固定踏板.现市场上有长度为2.1m的木板可以用来制作梯子的踏板(木板的宽厚和厚度正好符合要制作梯子踏板的要求),请问:制作这些踏板,王大伯最少需要买几块这样的木板?请说明理由.(不考虑锯缝的损耗) |
15. 难度:中等 | |
学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为1.6m的小明(AB)的影子BC长是3m,而小颖(EH)刚好在路灯灯泡的正下方H点,并测得HB=6m. (1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G; (2)求路灯灯泡的垂直高度GH; (3)如果小明沿线段BH向小颖(点H)走去,当小明走到BH中点B1处时,求其影子B1C1的长;当小明继续走剩下路程的到B2处时,求其影子B2C2的长;当小明继续走剩下路程的到B3处,…按此规律继续走下去,当小明走剩下路程的到Bn处时,其影子BnCn的长为______m.(直接用n的代数式表示) |
16. 难度:中等 | |||||||||||||
某班研究性学习小组,到校外进行数学探究活动,发现一个如图所示的支架PAB,于是他们利用手中已有的工具进行一系列操作,并得到了相关数据,从而可求得支架顶端P到地面的距离. 实验工具:①3米长的卷尺;②铅垂线(一端系着圆锥型铁块的细线). 实验步骤: 第一步,量得支架底部A、B两点之间的距离; 第二步,在AP上取一点C,挂上铅垂线CD,点D恰好落在直线AB上,量得CD和AD的长; 第三步,在BP上取一点E,挂上铅垂线EF,点F恰好落在直线AB上,量得EF和BF的长. 实验数据:
(2)假定你是该小组成员,请你用一句话谈谈本次实践活动的感受. |
17. 难度:中等 | |
九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度. |
18. 难度:中等 | |
阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC. |
19. 难度:中等 | |
如图,花丛中有一路灯杆AB.在灯光下,小明在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时小明的影长GH=5米.如果小明的身高为1.7米,求路灯杆AB的高度(精确到0.1米). |
20. 难度:中等 | |
晚上,小亮走在大街上.他发现:当他站在大街两边的两盏路灯之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为3米,左边的影子长为1.5米.又知自己身高1.80米,两盏路灯的高相同,两盏路灯之间的距离为12米.则路灯的高为______米. |
21. 难度:中等 | |
某社区拟筹资金2000元,计划在一块上、下底分别是10米、20米的梯形空地上种植花木(如图所示),他们想在△AMD和△BMC地带种植单价为10元/米2的太阳花,当△AMD地带种满花后,已经花了500元,请你预算一下,若继续在△BMC地带种植同样的太阳花,资金是否够用?并说明理由. |
22. 难度:中等 | |
如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m. (1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长; (2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由; (3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2. |
23. 难度:中等 | |
如图,一天早上,小张正向着教学楼AB走去,他发现教学楼后面有一水塔DC,可过了一会抬头一看:“怎么看不到水塔了”心里很是纳闷.经过了解,教学楼、水塔的高分别为20m和30m,它们之间的距离为30m,小张身高为1.6m(眼睛到头顶的距离忽略不计).小张要想看到水塔,他与教学楼的距离至少应有多少m? |
24. 难度:中等 | |
小明想测量学校内一棵不可攀的树的高度,由于我法直接测量A,B两点间的距离,请你用学过的数学知识按以下要求设计一种测量方法. (1)画出测量图; (2)写出测量步骤(测量数据用字母表示); (3)计算A,B间的距离. |
25. 难度:中等 | |
马戏团让狮子和公鸡表演跷跷板节目.跷跷板支柱AB的高度为1.2米. (1)若吊环高度为2米,支点A为跷跷板PQ的中点,狮子能否将公鸡送到吊环上,为什么? (2)若吊环高度为3.6米,在不改变其他条件的前提下移动支柱,当支点A移到跷跷板PQ的什么位置时,狮子刚好能将公鸡送到吊环上? |
26. 难度:中等 | |
汪老师要装修自己带阁楼的新居(下图为新居剖面图),在建造客厅到阁楼的楼梯AC时,为避免上楼时墙角F碰头,设计墙角F到楼梯的竖直距离FG为1.75m.他量得客厅高AB=2.8m,楼梯洞口宽AF=2m.阁楼阳台宽EF=3m.请你帮助汪老师解决下列问题: (1)要使墙角F到楼梯的竖直距离FG为1.75m,楼梯底端C到墙角D的距离CD是多少米? (2)在(1)的条件下,为保证上楼时的舒适感,楼梯的每个台阶小于20cm,每个台阶宽要大于20cm,问汪老师应该将楼梯建几个台阶?为什么? |
27. 难度:中等 | |
如图,在人民公园人工湖两侧的A、B两点欲建一座观赏桥,由于受条件限制,无法直接度量A、B间的距离.请你用学过的知识,在图中,设计三种测量方案. 要求: (1)画出你设计的测量平面草图; (2)在图形中标出测量的数据(长度用a、b、c…,角度用α、β、γ…表示),并写出测量的依据及AB的表达式; (3)设计一种得2分,设计两种得5分,设计三种得9分. |
28. 难度:中等 | |
小胖和小瘦去公园玩标准的跷跷板游戏,两同学越玩越开心,小胖对小瘦说:“真可惜!我只能将你最高翘到1米高,如果我俩各边的跷跷板都再伸长相同的一段长度,那么我就能翘到1米25,甚至更高!” (1)你认为小胖的话对吗?请你作图分析说明; (2)你能否找出将小瘦翘到1米25高的方法?试说明. |
29. 难度:中等 | |
(1)在一个宁静的夜晚,月光明媚,张芳和身高为1.65m的李红两位同学在人民广场上玩.张芳测得李红的影长为1m,并立即测得小树影长为1.5m,请你估算小树的高约为多少? (2)如图,已知△ABC,请你增加一个条件,写出一个结论,并证明你写出的结论. |
30. 难度:中等 | |||||||||||||||||||||
有一个测量弹跳力的体育器材,如图所示,竖杆AC、BD的长度分别为200厘米、300厘米,CD=300厘米.现有一人站在斜杆AB下方的点E处,直立、单手上举时中指指尖(点F)到地面的高度为EF,屈膝尽力跳起时,中指指尖刚好触到斜杆AB上的点G处,此时,就将EG与EF的差值y(厘米)作为此人此次的弹跳成绩.设CE=x(厘米),EF=a(厘米). (1)问点G比点A高出多少厘米?(用含y,a的式子表示) (2)求出由x和a算出y的计算公式; (3)现有甲、乙两组同学,每组三人,每人各选择一个适当的位置尽力跳了一次,且均刚好触到斜杆,由所得公式算得两组同学弹跳成绩如下右表所示,由于某种原因,甲组C同学的弹跳成绩辨认不清,但知他弹跳时的位置为x=150厘米,且a=205厘米,请你计算C同学此次的弹跳成绩,并从两组同学弹跳成绩的整齐程度比较甲、乙两组同学的弹跳成绩.
|