1. 难度:中等 | |
现给出下列四个命题: ①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比; ③菱形的面积等于两条对角线的积;④三角形的三个内角中至少有一内角不小于60°. 其中不正确的命题的个数是( ) A.1个 B.2个 C.3个 D.4个 |
2. 难度:中等 | |
如果三角形的每条边都扩大为原来的5倍,那么三角形的每个角( ) A.都扩大为原来的5倍 B.都扩大为原来的10倍 C.都扩大为原来的25倍 D.都与原来相等 |
3. 难度:中等 | |
如图,小明作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积.然后分别取△A1B1C1三边的中点A2、B2、C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积.用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第10个正△A10B10C10的面积是( ) A. B. C. D. |
4. 难度:中等 | |
若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为( ) A.1:4 B.1:2 C.2:1 D.1: |
5. 难度:中等 | |
已知△ABC∽△DEF,且AB:DE=1:2,则△ABC的面积与△DEF的面积之比为( ) A.1:2 B.1:4 C.2:1 D.4:1 |
6. 难度:中等 | |
已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为18,则△DEF的周长为( ) A.2 B.3 C.6 D.54 |
7. 难度:中等 | |
如果两个相似三角形的相似比是1:2,那么它们的面积比是( ) A.1:2 B.1:4 C.1: D.2:1 |
8. 难度:中等 | |
附加题:如图,在矩形ABCD中,AB=3,BC=4,点P在BC边上运动,连接DP,过点A作AE⊥DP,垂足为E,设DP=x,AE=y,则能反映y与x之间函数关系的大致图象是( ) A. B. C. D. |
9. 难度:中等 | |
如图,在△ABC中,AB=AC=2,∠BAC=20°.动点P、Q分别在直线BC上运动,且始终保持∠PAQ=100°.设BP=x,CQ=y,则y与x之间的函数关系用图象大致可以表示为( ) A. B. C. D. |
10. 难度:中等 | |
如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1cm/秒,点E运动的速度为2cm/秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是( ) A.3秒或4.8秒 B.3秒 C.4.5秒 D.4.5秒或4.8秒 |
11. 难度:中等 | |
如图,Rt△ABC∽Rt△DEF,则∠E的度数为( ) A.30° B.45° C.60° D.90° |
12. 难度:中等 | |
已知△ABC的三边长分别为,,2,△A′B′C′的两边长分别是1和,如果△ABC与△A′B′C′相似,那么△A′B′C′的第三边长应该是( ) A. B. C. D. |
13. 难度:中等 | |
将直角三角形的三条边长同时扩大同一倍数,得到的三角形是( ) A.钝角三角形 B.锐角三角形 C.直角三角形 D.等腰三角形 |
14. 难度:中等 | |
如图,在平行四边形ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF∽△CDE,则BF的长是( ) A.5 B.8.2 C.6.4 D.1.8 |
15. 难度:中等 | |
已知A、B、C、D点的坐标如图所示,E是图中两条虚线的交点,若△ABC∽△ADE,则E点的坐标是 . |
16. 难度:中等 | |
如图,斜边长为6cm,∠A=30°的直角三角板ABC绕点C顺时针方向旋转90°至△A′B′C的位置,再沿CB向左平移使点B′落在原三角板ABC的斜边AB上.则三角板向左平移的距离为 cm. |
17. 难度:中等 | |
两个相似三角形周长的比为2:3,则其对应的面积比为 . |
18. 难度:中等 | |
已知△ABC∽△A1B1C1,AB:A1B1=2:3,则S△ABC与S△A1B1C1之比为 . |
19. 难度:中等 | |
如图,已知△ABC∽△DBE,AB=8,DB=6,则S△ABC:S△DBE= . |
20. 难度:中等 | |
如果两个相似三角形的相似比是1:2,则其对应的面积比是 . |
21. 难度:中等 | |
若相似三角形的对应边的比为1:3,则它们的面积比为 . |
22. 难度:中等 | |
在直角坐标系中,已知A(-3,0),B(0,-4),C(0,1),过点C作直线L交x轴于点D,使得以点D、C、O为顶点的三角形与△AOB相相似,这样的直线一共可以作出 条. |
23. 难度:中等 | |
如果两个三角形相似,其中一个三角形两个内角分别是40°、60°,那么另一个三角形的最大角为 度. |
24. 难度:中等 | |
在一张复印出来的纸上,一个等腰三角形的底边长由原图中的3cm变成了6cm,则腰长由原图中的2cm变成了 cm. |
25. 难度:中等 | |
如下图,在矩形ABCD中,AB=12 cm,BC=6 cm.点P沿AB边从点A开始向点B以2 cm/s的速度移动;点Q沿DA边从点D开始向点A以1 cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6)那么: (1)当t为何值时,△QAP为等腰直角三角形? (2)求四边形QAPC的面积,提出一个与计算结果有关的结论; (3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似? |
26. 难度:中等 | |
如图,AD=2,AC=4,BC=6,∠B=36°,∠D=117°,△ABC∽△DAC. (1)求AB的长; (2)求CD的长; (3)求∠BAD的大小. |