1. 难度:中等 | |
在△ABC中,∠B=25°,AD是BC边上的高,并且AD2=BD•DC,则∠BCA的度数为 . |
2. 难度:中等 | |
已知:如图,在△ABC中,AB=15m,AC=12m,AD是∠BAC的外角平分线,DE∥AB交AC的延长线于点E,那么CE= m. |
3. 难度:中等 | |
如图,已知Rt△ABC中,AC=3,BC=4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A1C1,C1A2,…,则CA1= ,= . |
4. 难度:中等 | |
如图,在梯形ABCD中,AD∥BC,AC,BD交于点O,S△AOD:S△COB=1:9,则S△DOC:S△BOC= . |
5. 难度:中等 | |
如图,在平行四边形ABCD中,E是边BC上的点,AE交BD于点F,如果,那么= . |
6. 难度:中等 | |
如图,在△ABD中,∠ADB=90°,C是BD上一点,若E、F分别是AC、AB的中点,△DEF的面积为3.5,则△ABC的面积为 . |
7. 难度:中等 | |
在矩形ABCD中,E、F分别是边AD、BC的中点,点G、H在DC边上,且GH=DC.若AB=10,BC=12,则图中阴影部分的面积为 . |
8. 难度:中等 | |
如图,在▱ABCD中,E为CD中点,AE与BD相交于点O,S△DOE=12cm2,则S△AOB等于 cm2. |
9. 难度:中等 | |
如图,在△ABC中,EF∥BC,AE=2BE,则△AEF与梯形BCFE的面积比 . |
10. 难度:中等 | |
如图,在△ABC中,∠C=90°,AC=8,CB=6,在斜边AB上取一点M,使MB=CB,过M作MN⊥AB交AC于N,则MN= . |
11. 难度:中等 | |
如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AD=1,BD=4,则CD= . |
12. 难度:中等 | |
如图,在△ABC中,M、N是AB、BC的中点,AN、CM交于点O,那么△MON与△AOC面积的比是 . |
13. 难度:中等 | |
如图,AD=DF=FB,DE∥FG∥BC,则SⅠ:SⅡ:SⅢ= . |
14. 难度:中等 | |
如图,已知点D是AB边的中点,AF∥BC,CG:GA=3:1,BC=8,则AF= . |
15. 难度:中等 | |
已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒. (1)求直线BC的解析式; (2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积的; (3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD的面积为S,请直接写出S与t的函数关系式,并指出自变量t的取值范围; (4)试探究:当动点P在线段AB上移动时,能否在线段OA上找到一点Q,使四边形CQPD为矩形?并求出此时动点P的坐标. |
16. 难度:中等 | |
在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒. (1)求直线AB的解析式; (2)当t为何值时,以点A、P、Q为顶点的三角形与△AOB相似? (3)当t=2秒时,四边形OPQB的面积多少个平方单位? |
17. 难度:中等 | |
如图所示,已知A,B两点的坐标分别为(28,0)和(0,28).动点P从A点开始在线段AO上以每秒3个单位的速度向原点O运动,动直线EF从x轴开始每秒1个单位的速度向上平行移动(即EF∥x轴),并且分别与y轴,线段AB交于E,F点,连接FP,设动点P与动直线EF同时出发,运动时间为t秒. (1)当t=1秒时,求梯形OPFE的面积,当t为何值时,梯形OPFE的面积最大,最大面积是多少? (2)当梯形OPFE的面积等于三角形APF的面积时,求线段PF的长; (3)设t的值分别取t1,t2时(t1≠t2),所对应的三角形分别为△AF1P1和△AF2P2.试判断这两个三角形是否相似,请证明你的判断. |
18. 难度:中等 | |
如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A⇒B⇒C⇒D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒. (1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度; (2)求正方形边长及顶点C的坐标; (3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标; (4)如果点P、Q保持原速度不变,当点P沿A⇒B⇒C⇒D匀速运动时,OP与PQ能否相等?若能,写出所有符合条件的t的值;若不能,请说明理由. |
19. 难度:中等 | |
锐角△ABC中,BC=6,S△ABC=12,两动点M,N分别在边AB,AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(y>0) (1)△ABC中边BC上高AD=______; (2)当x=______时,PQ恰好落在边BC上(如图1); (3)当PQ在△ABC外部时(如图2),求y关于x的函数关系式(注明x的取值范围),并求出x为何值时y最大,最大值是多少? |
20. 难度:中等 | |
已知:如图①,在Rt△ACB中,∠C=90°,AC=4 cm,BC=3 cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题: (1)当t为何值时,PQ∥BC; (2)设△AQP的面积为y(cm2),求y与t之间的函数关系式; (3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由; (4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由. |
21. 难度:中等 | |
如图所示,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F. (1)求证:△ADE∽△BEF; (2)设正方形的边长为4,AE=x,BF=y.当x取什么值时,y有最大值?并求出这个最大值. |
22. 难度:中等 | |
在△ABC中,∠C=Rt∠,AC=4cm,BC=5cm,点D在BC上,并且CD=3cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C移动.过点P作PE∥BC交AD于点E,连接EQ,设动点运动时间为x秒. (1)用含x的代数式表示AE、DE的长度; (2)当点Q在BD(不包括点B、D)上移动时,设△EDQ的面积为y(cm2),求y与x的函数关系式,并写出自变量x的取值范围; (3)当x为何值时,△EDQ为直角三角形? |
23. 难度:中等 | |
如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动,以BE为边,在BE的上方作正方形BEFG,连接CG.请探究: (1)线段AE与CG是否相等请说明理由: (2)若设AE=x,DH=y,当x取何值时,y最大? (3)连接BH,当点E运动到AD的何位置时,△BEH∽△BAE? |
24. 难度:中等 | |
已知梯形ABCD中,AD∥BC,且AD<BC,AD=5,AB=DC=2. (1)如图,P为AD上的一点,满足∠BPC=∠A,求AP的长; (2)如果点P在AD边上移动(点P与点A、D不重合),且满足∠BPE=∠A,PE交直线BC于点E,同时交直线DC于点Q. ①当点Q在线段DC的延长线上时,设AP=x,CQ=y,求y关于x的函数关系式,并写出自变量x的取值范围; ②当CE=1时,写出AP的长.(不必写解答过程) |
25. 难度:中等 | |
已知一个二次函数的图象经过A(-1,0)、B(0,3)、C(4,-5)三点. (1)求这个二次函数的解析式及其图象的顶点D的坐标; (2)这个函数的图象与x轴有两个交点,除点A外的另一个交点设为E,点O为坐标原点.在△AOB、△BOE、△ABE和△BDE着四个三角形中,是否有相似三角形?如果有,指出哪几对三角形相似,并加以证明;如果没有,要说明理由. |
26. 难度:中等 | |
如图,四边形ABCD是等腰梯形,其中AD∥BC,AD=2,BC=4,AB=CD=.点M从点B开始,以每秒2个单位长的速度向点C运动;点N从点D开始,以每秒1个单位长的速度向点A运动,若点M,N同时开始运动,点M与点C不重合,运动时间为t(t>0).过点N作NP垂直于BC,交BC于点P,交AC于点Q,连接MQ. (1)用含t的代数式表示QP的长; (2)设△CMQ的面积为S,求出S与t的函数关系式; (3)求出t为何值时,△CMQ为等腰三角形? |
27. 难度:中等 | |
如图,△ABC中,AC=BC,∠A=30°,AB=.将三角板中30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC,BC相交于点E,F,连接DE、DF、EF,且使DE始终与AB垂直,设AD=x,△DEF的面积为y. (1)画出符合条件的图形,写出与△ADE一定相似的三角形并说明理由; (2)EF与AB可能平行吗?若能,请求出此时AD的长;若不能,请说明理由; (3)求出y与x之间的函数关系式并求出自变量的取值范围;当x为何值时,y有最大值,最大值为多少? |
28. 难度:中等 | |
如图,在梯形ABCD中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10cm,点P由B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交BD于Q,连接PE.若设运动时间为t(s)(0<t<5).解答下列问题: (1)当t为何值时,PE∥AB; (2)设△PEQ的面积为y(cm2),求y与t之间的函数关系式; (3)是否存在某一时刻t,使S△PEQ=S△BCD?若存在,求出此时t的值;若不存在,说明理由; (4)连接PF,在上述运动过程中,五边形PFCDE的面积是否发生变化?说明理由. |
29. 难度:中等 | |
如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF. 解答下列问题: (1)如果AB=AC,∠BAC=90°, ①当点D在线段BC上时(与点B不重合),如图乙,线段CF,BD之间的位置关系为______,数量关系为______. ②当点D在线段BC的延长线时,如图丙,①中的结论是否仍然成立,为什么? (2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动. 试探究:当△ABC满足一个什么条件时,CF⊥BC(点C,F重合除外)画出相应图形,并说明理由.(画图不写作法) (3)若AC=2,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值. |
30. 难度:中等 | |
如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n. (1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明; (2)求m与n的函数关系式,直接写出自变量n的取值范围; (3)以△ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BD2+CE2=DE2; (4)在旋转过程中,(3)中的等量关系BD2+CE2=DE2是否始终成立?若成立,请证明;若不成立,请说明理由. |