1. 难度:中等 | |
定义集合运算:A⊙B={z︳z=xy(x+y),x∈A,y∈B},设集合A={0,1},B={2,3},则集合A⊙B的所有元素之和为( ) A.0 B.6 C.12 D.18 |
2. 难度:中等 | |
设( ) A.0 B.1 C.2 D.3 |
3. 难度:中等 | |
函数y=1+ax(0<a<1)的反函数的图象大致是( ) A. B. C. D. |
4. 难度:中等 | |
设向量a=(1,-3),b=(-2,4),若表示向量4a、3b-2a、c的有向线段首尾相接能构成三角形,则向量c为( ) A.(1,-1) B.(-1,1) C.(-4,6) D.(4,-6) |
5. 难度:中等 | |
已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),则f(6)的值为( ) A.-1 B.0 C.1 D.2 |
6. 难度:中等 | |
在△ABC中,角A、B、C的对边分别为a、b、c,已知A=,a=,b=1,则c=( ) A.1 B.2 C.-1 D. |
7. 难度:中等 | |
在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为1,则该椭圆的离心率为( ) A. B. C. D. |
8. 难度:中等 | |
正方体的内切球与其外接球的体积之比为( ) A.1: B.1:3 C.1:3 D.1:9 |
9. 难度:中等 | |
设p:x2-x-20>0,q:<0,则p是q的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 |
10. 难度:中等 | |
已知()n的展开式中第三项与第五项的系数之比为,则展开式中常数项是( ) A.-1 B.1 C.-45 D.45 |
11. 难度:中等 | |
已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( ) A.33 B.34 C.35 D.36 |
12. 难度:中等 | |
已知x和y是正整数,且满足约束条件则z=2x+3y的最小值是( ) A.24 B.14 C.13 D.11.5 |
13. 难度:中等 | |
某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是 . |
14. 难度:中等 | |
设Sn为等差数列{an}的前n项和,若S5=10,S10=-5,则公差为 (用数字作答). |
15. 难度:中等 | |
已知抛物线y2=4x,过点P(4,0)的直线与抛物线相交于A(x1,y1),B(x2,y2)两点,则y12+y22的最小值是 . |
16. 难度:中等 | |
如图,在正三棱柱ABC-A1B1C1中,所有棱长均为1,则点B1到平面ABC1的距离为 . |
17. 难度:中等 | |
设函数f(x)=2x3-3(a-1)x2+1,其中a≥1. (Ⅰ)求f(x)的单调区间; (Ⅱ)讨论f(x)的极值. |
18. 难度:中等 | |
已知函数f(x)=Asin2(ωx+φ)(A>0,ω>0,0<φ<),且y=f(x)的最大值为2,其图象相邻两对称轴间的距离为2,并过点(1,2). (Ⅰ)求ϕ; (Ⅱ)计算f(1)+f(2)+…+f(2008). |
19. 难度:中等 | |
盒中装着标有数字1,2,3,4的卡片各2张,从盒中任意任取3张,每张卡片被抽出的可能性都相等,求: (Ⅰ)抽出的3张卡片上最大的数字是4的概率; (Ⅱ)抽出的3张中有2张卡片上的数字是3的概念; (Ⅲ)抽出的3张卡片上的数字互不相同的概率. |
20. 难度:中等 | |
如图,已知四棱锥P-ABCD的底面ABCD为等腰梯形,AB∥DC,AC⊥BD,AC与BD相交于点O,且顶点P在底面上的射影恰为O点,又BO=2,PO=,PB⊥PD.求异面直接PD与BC所成角的余弦值. |
21. 难度:中等 | |
已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,两准线间的距离为1. (Ⅰ)求椭圆的方程; (Ⅱ)直线l过点P(0,2)且与椭圆相交于A、B两点,当△AOB面积取得最大值时,求直线l的方程. |
22. 难度:中等 | |
已知数列{an}中,在直线y=x上,其中n=1,2,3…. (Ⅰ)令bn=an-1-an-3,求证数列{bn}是等比数列; (Ⅱ)求数列{an}的通项; (Ⅲ)设Sn、Tn分别为数列{an}、{bn}的前n项和,是否存在实数λ,使得数列为等差数列?若存在,试求出λ.若不存在,则说明理由. |