1. 难度:中等 | |
已知0<a<2,复数z的实部为a,虚部为1,则|z|的取值范围是( ) A.(1,5) B.(1,3) C. D. |
2. 难度:中等 | |
记等差数列{an}的前n项和为Sn,若,S4=20,则S6=( ) A.16 B.24 C.36 D.48 |
3. 难度:中等 | |||||||||||||
某校共有学生2000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( )
A.24 B.18 C.16 D.12 |
4. 难度:中等 | |
若变量x,y满足则z=3x+2y的最大值是( ) A.90 B.80 C.70 D.40 |
5. 难度:中等 | |
将正三棱柱截去三个角(如图1所示A,B,C分别是△GHI三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( ) A. B. C. D. |
6. 难度:中等 | |
已知命题p:所有有理数都是实数,命题q:正数的对数都是负数,则下列命题中为真命题的是( ) A.(¬p)∨q B.p∧q C.(¬p)∧(¬q) D.(¬p)∨(¬q) |
7. 难度:中等 | |
设a∈R,若函数y=eax+3x,x∈R有大于零的极值点,则( ) A.a>-3 B.a<-3 C.a>- D.a<- |
8. 难度:中等 | |
在平行四边形ABCD中,AC与DB交于点O,E是线段OD的中点,AE延长线与CD交于F.若=( ) A. B. C. D. |
9. 难度:中等 | |
阅读程序框图,若输入m=4,n=3,则输出a= ,i= . (注:框图中的赋值符号“=”,也可以写成“←”或“:=”) |
10. 难度:中等 | |
已知(1+kx2)6(k是正整数)的展开式中,x8的系数小于120,则k= . |
11. 难度:中等 | |
经过圆x2+2x+y2=0的圆心C,且与直线x+y=0垂直的直线方程是 . |
12. 难度:中等 | |
已知函数f(x)=(sinx-cosx)sinx,x∈R,则f(x)的最小正周期是 . |
13. 难度:中等 | |
已知曲线C1,C2的极坐标方程分别为ρcosθ=3,,则曲线C1与C2交点的极坐标为 . |
14. 难度:中等 | |
已知a∈R,若关于x的方程x2+x+|a-|+|a|=0有实根,则a的取值范围是 . |
15. 难度:中等 | |
已知PA是圆O的切线,切点为A,PA=2.AC是圆O的直径,PC与圆O交于点B,PB=1,则圆O的半径R= . |
16. 难度:中等 | |
已知函数f(x)=Asin(x+φ)(A>0,0<φ<π),x∈R的最大值是1,其图象经过点. (1)求f(x)的解析式; (2)已知,且,,求f(α-β)的值. |
17. 难度:中等 | |
随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为ξ. (1)求ξ的分布列; (2)求1件产品的平均利润(即ξ的数学期望); (3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少? |
18. 难度:中等 | |
设b>0,椭圆方程为,抛物线方程为x2=8(y-b).如图所示,过点F(0,b+2)作x轴的平行线,与抛物线在第一象限的交点为G,已知抛物线在点G的切线经过椭圆的右焦点F1. (1)求满足条件的椭圆方程和抛物线方程; (2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得△ABP为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标). |
19. 难度:中等 | |
设k∈R,函数,F(x)=f(x)-kx,x∈R,试讨论函数F(x)的单调性. |
20. 难度:中等 | |
如图所示,四棱锥P-ABCD的底面ABCD是半径为R的圆的内接四边形,其中BD是圆的直径,∠ABD=60°,∠BDC=45°,PD垂直底面ABCD,,E,F分别是PB,CD上的点,且,过点E作BC的平行线交PC于G. (1)求BD与平面ABP所成角θ的正弦值; (2)证明:△EFG是直角三角形; (3)当时,求△EFG的面积. |
21. 难度:中等 | |
设p,q为实数,α,β是方程x2-px+q=0的两个实根,数列{xn}满足x1=p,x2=p2-q,xn=pxn-1-qxn-2(n=3,4,…). (1)证明:α+β=p,αβ=q; (2)求数列{xn}的通项公式; (3)若p=1,,求{xn}的前n项和Sn. |