1. 难度:中等 | |
某校现有高一学生210人,高二学生270人,高三学生300人,学校学生会用分层抽样的方法从这三个年级的学生中随机抽取n名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数应为( ) A.10 B.9 C.8 D.7 |
2. 难度:中等 | |
用系统抽样法(按等距离的规则)要从160名学生中抽取容量为20的样本,将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为125,则第一组中按此抽签方法确定的号码是( ) A.7 B.5 C.4 D.3 |
3. 难度:中等 | |
200辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速超过60km/h的汽车数量为( ) A.65辆 B.76辆 C.88辆 D.95辆 |
4. 难度:中等 | |
已知曲线的一条切线的斜率为,则切点的横坐标为( ) A.1 B.2 C.3 D.4 |
5. 难度:中等 | |||||||||
已知某一随机变量ξ的分布列如下,且Eξ=6.3,则a的值为( )
A.5 B.6 C.7 D.8 |
6. 难度:中等 | |
已知函数f(x)的导函数f′(x)=ax2+bx+c的图象如图,则f(x)的图象可能是( ) A. B. C. D. |
7. 难度:中等 | |
过曲线(x>0)上横坐标为1的点的切线方程为( ) A.3x+y-1=0 B.3x+y-5=0 C.x-y+1=0 D.x-y-1=0 |
8. 难度:中等 | |
函数y=xsinx+cosx在下面哪个区间内是增函数( ) A.(,) B.(π,2π) C.(,) D.(2π,3π) |
9. 难度:中等 | |
若,则的值为( ) A.-2 B. C. D.3 |
10. 难度:中等 | |
若随机变量x~N(1,4),P(x≤0)=m,则P(0<x<2)=( ) A.1-2m B. C. D.1-m |
11. 难度:中等 | |
函数f(x)在定义域R内可导,若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)f′(x)<0,设a=f(0),b=f(),c=f(3),则( ) A.a<b<c B.c<a<b C.c<b<a D.b<c<a |
12. 难度:中等 | |
已知函数f(x)=x3+ax2+2bx+c(a,b,c∈R),且函数f(x)在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,则z=(a+3)2+b2的取值范围( ) A.(,2) B.(,4) C.(1,2) D.(1,4) |
13. 难度:中等 | |
曲线y=x3在点(1,1)处的切线与x轴、直线x=2所围成的三角形的面积为 . |
14. 难度:中等 | |
已知函数f(x)=(2e1-x+ex-1+3x2-8x+8 ),则曲线y=f(x)在点(1,f(1))处的切线方程是 . |
15. 难度:中等 | |
已知f(x)=x2+2x•f′(1),则f′(0)= . |
16. 难度:中等 | |
设每年南充市第二次模拟考试成绩大体上能反映当年全市考生高考的成绩状况,设某一年二模考试理科成绩服从正态分布ξ~N(480,1002),若往年全市一本院校录取率为40%,那么一本录取分数线可能划在(已知Φ(0.25)=0.6) 分. |
17. 难度:中等 | |
设函数 (1)求f(x)在x=0处的左右极限,并判断f(x)在x=0处是否有极限,是否连续; (2)判断f(x)在x=1、x=2是否连续. |
18. 难度:中等 | |
设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的. (Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率; (Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率; (Ⅲ)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列及期望. |
19. 难度:中等 | |
已知函数f(x)=x3+ax2+bx+c在x=-与x=1时都取得极值 (1)求a、b的值与函数f(x)的单调区间. (2)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范围. |
20. 难度:中等 | |
统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:x+8(0<x≤120).已知甲、乙两地相距100千米. (I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升? |
21. 难度:中等 | |
已知数列{an}满足an+1=-an2+2an(n∈N*),且0<a1<1. (1)用数学归纳法证明:0<an<1; (2)若bn=lg(1-an),且,求无穷数列所有项的和. |
22. 难度:中等 | |
已知a>0且a≠1,函数f(x)=loga(1-ax). (1)求函数f(x)的定义域,并判断f(x)的单调性; (2)若n∈N*,求; (3)当a=e(e为自然对数的底数)时,设h(x)=(1-ef(x))(x2-m+1).若函数的极值存在,求实数m的取值范围以及函数h(x)的极值. |