1. 难度:中等 | |
下列函数中,既是偶函数又在(0,+∞)上单调递增的是( ) A.y=x3 B.y=ln|x| C. D.y=cos |
2. 难度:中等 | |
已知是(-∞,+∞)上的减函数,那么a的取值范围是( ) A.(0,1) B. C. D. |
3. 难度:中等 | |
已知偶函数f(x)在区间[0,+∞)单调增加,则满足f(2x-1)<的x取值范围是( ) A.(,) B.[,) C.(,) D.[,) |
4. 难度:中等 | |
已知函数若f(2-a2)>f(a),则实数a的取值范围是( ) A.(-∞,-1)∪(2,+∞) B.(-1,2) C.(-2,1) D.(-∞,-2)∪(1,+∞) |
5. 难度:中等 | |
已知定义域为(-1,1)的奇函数y=f(x)又是减函数,且f(a-3)+f(9-a2)<0,则a的取值范围是( ) A. B. C. D.(-2,3) |
6. 难度:中等 | |
如果函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,那么实数a的取值范围是 . |
7. 难度:中等 | |
已知定义在区间[0,1]上的函数y=f(x)的图象如图所示,对于满足0<x1<x2<1的任意x1、x2,给出下列结论: ①f(x2)-f(x1)>x2-x1; ②x2f(x1)>x1f(x2); ③<f (). 其中正确结论的序号是 (把所有正确结论的序号都填上). |
8. 难度:中等 | |
若函数在(1,+∞)上是增函数,则实数k的取值范围是 . |
9. 难度:中等 | |
设函数f(x)=ax3-3x+1(x∈R),若对于任意的x∈[-1,1]都有f(x)≥0成立,求实数a的值. |
10. 难度:中等 | |
已知函数f(x)=x2+alnx. (Ⅰ)当a=-2时,求函数f(x)的单调区间和极值; (Ⅱ)若函数在[1,+∞)上是增函数,不等式在[1,+∞)上恒成立,求实数a的取值范围. |