1. 难度:中等 | |
在复平面内,复数z=sin2+icos2对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 |
2. 难度:中等 | |
定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为( ) A.0 B.2 C.3 D.6 |
3. 难度:中等 | |
若函数y=f(x)的值域是,则函数的值域是( ) A. B. C. D. |
4. 难度:中等 | |
=( ) A. B.0 C. D.不存在 |
5. 难度:中等 | |
在数列{an}中,a1=2,,则an=( ). A.2+lnn B.2+(n-1)lnn C.2+nlnn D.1+n+lnn |
6. 难度:中等 | |
函数y=tanx+sinx-|tanx-sinx|在区间内的图象是( ) A. B. C. D. |
7. 难度:中等 | |
已知F1、F2是椭圆的两个焦点,满足•=0的点M总在椭圆内部,则椭圆离心率的取值范围是( ) A.(0,1) B.(0,] C.(0,) D.[,1) |
8. 难度:中等 | |
展开式中的常数项为( ) A.1 B.46 C.4245 D.4246 |
9. 难度:中等 | |
若0<a1<a2,0<b1<b2,且a1+a2=b1+b2=1,则下列代数式中值最大的是( ) A.a1b1+a2b2 B.a1a2+b1b2 C.a1b2+a2b1 D. |
10. 难度:中等 | |
连接球面上两点的线段称为球的弦.半径为4的球的两条弦AB、CD的长度分别等于、,M、N分别为AB、CD的中点,每条弦的两端都在球面上运动,有下列四个命题: ①弦AB、CD可能相交于点M;②弦AB、CD可能相交于点N;③MN的最大值为5;④MN的最小值为1 其中真命题的个数为( ) A.1个 B.2个 C.3个 D.4个 |
11. 难度:中等 | |
电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为( ) A. B. C. D. |
12. 难度:中等 | |
已知函数f(x)=2mx2-2(4-m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是( ) A.(0,2) B.(0,8) C.(2,8) D.(-∞,0) |
13. 难度:中等 | |
直角坐标平面上三点A(1,2)、B(3,-2)、C(9,7),若E、F为线段BC的三等分点,则= . |
14. 难度:中等 | |
不等式的解集为 . |
15. 难度:中等 | |
过抛物线x2=2py(p>0)的焦点F作倾斜角为30°的直线,与抛物线分别交于A、B两点(点A在y轴左侧),则= . |
16. 难度:中等 | |
如图(1),一个正四棱柱形的密闭容器水平放置,其底部镶嵌了同底的正四棱锥形实心装饰块, 容器内盛有a升水时,水面恰好经过正四棱锥的顶点P.如果将容器倒置,水面也恰好过点P(图(2)) 有下列四个命题: A.正四棱锥的高等于正四棱柱高的一半 B.将容器侧面水平放置时,水面也恰好过点P C.任意摆放该容器,当水面静止时,水面都恰好经过点P D.若往容器内再注入a升水,则容器恰好能装满. 其中真命题的代号是: (写出所有真命题的代号). |
17. 难度:中等 | |
在△ABC中,角A,B,C所对应的边分别为a,b,c,,,2sinBcosC=sinA,求A,B及b,c. |
18. 难度:中等 | |
某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计当年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案,第二年与第一年相互独立.令ξi(i=1,2)表示方案实施两年后柑桔产量达到灾前产量的倍数. (1).写出ξ1、ξ2的分布列; (2).实施哪种方案,两年后柑桔产量超过灾前产量的概率更大? (3).不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大? |
19. 难度:中等 | |
数列{an}为等差数列,an为正整数,其前n项和为Sn,数列{bn}为等比数列,且a1=3,b1=1,数列是公比为64的等比数列,b2S2=64. (1)求an,bn; (2)求证. |
20. 难度:中等 | |
如图,正三棱锥O-ABC的三条侧棱OA、OB、OC两两垂直,且长度均为2.E、F分别是AB、AC的中点,H是EF的中点,过EF作平面与侧棱OA、OB、OC或其延长线分别相交于A1、B1、C1,已知. (1)求证:B1C1⊥平面OAH; (2)求二面角O-A1B1-C1的大小. |
21. 难度:中等 | |
设点P(x,y)在直线x=m(y≠±m,0<m<1)上,过点P作双曲线x2-y2=1的两条切线PA、PB,切点为A、B,定点. (1)求证:三点A、M、B共线. (2)过点A作直线x-y=0的垂线,垂足为N,试求△AMN的重心G所在曲线方程. |
22. 难度:中等 | |
已知函数,x∈(0,+∞). (1)当a=8时,求f(x)的单调区间; (2)对任意正数a,证明:1<f(x)<2. |