1. 难度:中等 | |
已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=( ) A.{x|x≥-1} B.{x|x≤2} C.{x|0<x≤2} D.{x|-1≤x≤2} |
2. 难度:中等 | |
函数y=(sinx+cosx)2+1的最小正周期是( ) A. B.π C. D.2π |
3. 难度:中等 | |
已知a,b都是实数,那么“a2>b2”是“a>b”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 |
4. 难度:中等 | |
已知{an}是等比数列,a2=2,a5=,则公比q=( ) A. B.-2 C.2 D. |
5. 难度:中等 | |
已知a≥0,b≥0,且a+b=2,则( ) A. B. C.a2+b2≥2 D.a2+b2≤3 |
6. 难度:中等 | |
在(x-1)(x-2)(x-3)(x-4)(x-5)的展开式中,含x4的项的系数是( ) A.-15 B.85 C.-120 D.274 |
7. 难度:中等 | |
在同一平面直角坐标系中,函数(x∈[0,2π])的图象和直线的交点个数是( ) A.0 B.1 C.2 D.4 |
8. 难度:中等 | |
若双曲线的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是( ) A.3 B.5 C. D. |
9. 难度:中等 | |
对两条不相交的空间直线a与b,必存在平面α,使得( ) A.a⊂α,b⊂α B.a⊂α,b∥α C.a⊥α,b⊥α D.a⊂α,b⊥α |
10. 难度:中等 | |
若a≥0,b≥0,且当时,恒有ax+by≤1,则以a,b为坐标的点P(a,b)所形成的平面区域的面积是( ) A. B. C.1 D. |
11. 难度:中等 | |
已知函数f(x)=x2+|x-2|,则f(1)= . |
12. 难度:中等 | |
若,则cos2θ= . |
13. 难度:中等 | |
已知F1、F2为椭圆+=1的两个焦点,过F1的直线交椭圆于A、B两点.若|F2A|+|F2B|=12,则|AB|= . |
14. 难度:中等 | |
在△ABC中,角A、B、C所对的边分别为a、b、C、若(b-c)cosA=acosC,则cosA= . |
15. 难度:中等 | |
如图,已知球O的面上四点A、B、C、D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=,则球O的体积等于 . |
16. 难度:中等 | |
已知是平面内的单位向量,若向量满足•(-)=0,则||的取值范围是 . |
17. 难度:中等 | |
用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻.这样的六位数的个数是 (用数字作答). |
18. 难度:中等 | |
已知数列{xn}的首项x1=3,通项xn=2np+np(n∈N*,p,q为常数),且成等差数列.求: (Ⅰ)p,q的值; (Ⅱ)数列{xn}前n项和Sn的公式. |
19. 难度:中等 | |
一个袋中装有大小相同的黑球、白球和红球,已知袋中共有10个球,从中任意摸出1个球,得到黑球的概率是;从中任意摸出2个球,至少得到1个白球的概率是.求: (Ⅰ)从中任意摸出2个球,得到的数是黑球的概率; (Ⅱ)袋中白球的个数. |
20. 难度:中等 | |
如图,矩形ABCD和梯形BEFC所在平面互相垂直,∠BCF=∠CEF=90°,AD=. (Ⅰ)求证:AE∥平面DCF; (Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为60°? |
21. 难度:中等 | |
已知a是实数,函数f(x)=x2(x-a). (Ⅰ)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线方程; (Ⅱ)求f(x)在区间[0,2]上的最大值. |
22. 难度:中等 | |
已知曲线C是到点和到直线距离相等的点的轨迹,l是过点Q(-1,0)的直线,M是C上(不在l上)的动点;A、B在l上,MA⊥l,MB⊥x轴(如图). (Ⅰ)求曲线C的方程; (Ⅱ)求出直线l的方程,使得为常数. |