1. 难度:中等 | |
复数的实部是( ) A.-2 B.2 C.3 D.4 |
2. 难度:中等 | |
已知集合M={-1,1},,则M∩N=( ) A.{-1,1} B.{-1} C.{0} D.{-1,0} |
3. 难度:中等 | |
下列几何体各自的三视图中,有且仅有两个视图相同的是( ) A.①② B.①③ C.①④ D.②④ |
4. 难度:中等 | |
为了得到函数y=sin(2x-)的图象,可以将函数y=cos2x的图象( ) A.向右平移个单位长度 B.向右平移个单位长度 C.向左平移个单位长度 D.向左平移个单位长度 |
5. 难度:中等 | |
已知=(1,n),=(-1,n),若2-与垂直,则||=( ) A.1 B. C.2 D.4 |
6. 难度:中等 | |
给出下列三个等式:f(xy)=f(x)+f(y),f(x+y)=f(x)f(y),.下列函数中不满足其中任何一个等式的是( ) A.f(x)=3x B.f(x)=sin C.f(x)=log2 D.f(x)=tan |
7. 难度:中等 | |
命题“对任意的x∈R,x3-x2+1≤0”的否定是( ) A.不存在x∈R,x3-x2+1≤0 B.存在x∈R,x3-x2+1≤0 C.存在x∈R,x3-x2+1>0 D.对任意的x∈R,x3-x2+1>0 |
8. 难度:中等 | |
某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:每一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;…第六组,成绩大于等于18秒且小于等于19秒.如图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班人数的百分比为x,成绩大于等于15秒且小于17秒的学生人数为y,则从频率分布直方图中可以分析出x和y分别为( ) A.0.9,35 B.0.9,45 C.0.1,35 D.0.1,45 |
9. 难度:中等 | |
设O是坐标原点,F是抛物线y2=2px(p>0)的焦点,A是抛物线上的一点,与x轴正向的夹角为60°,则为( ) A. B. C. D. |
10. 难度:中等 | |
阅读右边的程序框图,若输入的n是100,则输出的变量S和T的值依次是( ) A.2550,2500 B.2550,2550 C.2500,2500 D.2500,2550 |
11. 难度:中等 | |
设函数y=x3与y=()x-2的图象的交点为(x,y),则x所在的区间是( ) A.(0,1) B.(1,2) C.(2,3) D.(3,4) |
12. 难度:中等 | |
设集合A={1,2},B={1,2,3},分别从集合A和B中随机取一个数a和b,确定平面上的一个点P(a,b),记“点P(a,b)落在直线x+y=n上”为事件Cn(2≤n≤5,n∈N),若事件Cn的概率最大,则n的所有可能值为( ) A.3 B.4 C.2和5 D.3和4 |
13. 难度:中等 | |
设函数f1(x)=,f2(x)=x-1,f3(x)=x2,则f1(f2(f3(2009)))= . |
14. 难度:中等 | |
已知函数y=loga(x-1)+1(a>0,且a≠1)的图象恒过定点A,若点A在一次函数y=mx+n的图象上,其中 最小值为 . |
15. 难度:中等 | |
当x∈(1,2)时,不等式x2+mx+4<0恒成立,则m的取值范围是 . |
16. 难度:中等 | |
与直线x+y-2=0和曲线x2+y2-12x-12y+54=0都相切的半径最小的圆的标准方程是 . |
17. 难度:中等 | |
在△ABC中,角A、B、C的对边分别为a、b、c,. (Ⅰ)求cosC的值; (Ⅱ)若,且a+b=9,求c的长. |
18. 难度:中等 | |
设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列. (1)求数列{an}的通项公式. (2)令bn=lna3n+1,n=1,2,…,求数列{bn}的前n项和Tn. |
19. 难度:中等 | |
本公司计划2008年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元.甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟.假定甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元? |
20. 难度:中等 | |
如图,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC. (1)求证:D1C⊥AC1; (2)设E是DC上一点,试确定E的位置,使D1E∥平面A1BD,并说明理由. |
21. 难度:中等 | |
设函数f(x)=ax2+blnx,其中ab≠0. 证明:当ab>0时,函数f(x)没有极值点;当ab<0时,函数f(x)有且只有一个极值点,并求出极值. |
22. 难度:中等 | |
已知椭圆C中心在原点、焦点在x轴上,椭圆C上的点到焦点的最大值为3,最小值为1. (Ⅰ)求椭圆C的标准方程; (Ⅱ)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M、N(M、N不是左、右顶点),且以MN为直径的圆经过椭圆的右顶点A.求证:直线l过定点,并求出定点的坐标. |