1. 难度:中等 | |
不等式的解集是( ) A.(0,2) B.(2,+∞) C.(2,4) D.(-∞,0)∪(2,+∞) |
2. 难度:中等 | |
抛物线y=ax2的准线方程是y=2,则a的值为( ) A. B. C.8 D.-8 |
3. 难度:中等 | |
=( ) A. B. C. D. |
4. 难度:中等 | |
已知x∈(-,0),cosx=,则tan2x等于( ) A. B.- C. D.- |
5. 难度:中等 | |
等差数列{an}中,已知,a2+a5=4,an=33,则n为( ) A.48 B.49 C.50 D.51 |
6. 难度:中等 | |
双曲线虚轴的一个端点为M,两个焦点为F1、F2,∠F1MF2=120°,则双曲线的离心率为( ) A. B. C. D. |
7. 难度:中等 | |
设函数若f(x)>1,则x的取值范围是( ) A.(-1,1) B.(-1,+∞) C.(-∞,-2)∪(0,+∞) D.(-∞,-1)∪(1,+∞) |
8. 难度:中等 | |
O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,λ∈[0,+∞),则P的轨迹一定通过△ABC的( ) A.外心 B.内心 C.重心 D.垂心 |
9. 难度:中等 | |
函数,x∈(1,+∞)的反函数为( ) A.,x∈(0,+∞) B.,x∈(0,+∞) C.,x∈(-∞,0) D.,x∈(-∞,0) |
10. 难度:中等 | |
棱长为a的正方体中,连接相邻面的中心,以这些线段为棱的八面体的体积为( ) A. B. C. D. |
11. 难度:中等 | |
已知长方形的四个顶点A(0,0),B(2,0),C(2,1)和D(0,1),一质点从AB的中点P沿与AB夹角为θ的方向射到BC上的点P1后,依次反射到CD、DA和AB上的点P2、P3和P4(入射角等于反射角)若P4与P重合,则tgθ=( ) A. B. C. D.1 |
12. 难度:中等 | |
棱长都为的四面体的四个顶点在同一球面上,则此球的表面积为( ) A.3π B.4π C.3 D.6π |
13. 难度:中等 | |
在的展开式中,x3的系数是 (用数字作答) |
14. 难度:中等 | |
某公司生产三种型号的轿车,产量分别为1200辆、6000辆和2000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取 辆、 辆、 辆. |
15. 难度:中等 | |
在平面几何里,有勾股定理“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2”,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确的结论是:“设三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则 .” |
16. 难度:中等 | |
将3种作物种植在如图块试验田里,每块种植一种作物且相邻的试验田不能种植同一作物,不同的种植方法共有 种.(以数字答) |
17. 难度:中等 | |
已知正四棱柱ABCD-A1B1C1D1.AB=1,AA1=2,点E为CC1中点,点F为BD1中点. (1)证明EF为BD1与CC1的公垂线; (2)求点D1到面BDE的距离. |
18. 难度:中等 | |
已知抛物线C1:y=x2+2x和C:y=-x2+a,如果直线l同时是C1和C2的切线,称l是C1和C2的公切线,公切线上两个切点之间的线段,称为公切线段. (Ⅰ)a取什么值时,C1和C2有且仅有一条公切线?写出此公切线的方程; (Ⅱ)若C1和C2有两条公切线,证明相应的两条公切线段互相平分. |
19. 难度:中等 | |
已知数列{an}满足a1=1,an=3n-1+an-1(n≥2). (Ⅰ)求a2,a3; (Ⅱ)证明. |
20. 难度:中等 | |
在三种产品,合格率分别是0.90,0.95和0.95,各抽取一件进行检验. (Ⅰ)求恰有一件不合格的概率; (Ⅱ)求至少有两件不合格的概率.(精确到0.001) |
21. 难度:中等 | |
已知函数f(x)=sin(ωx+ϕ)(ω>0,0≤ϕ≤π)是R上的偶函数,其图象关于点对称,且在区间上是单调函数,求ϕ和ω的值. |
22. 难度:中等 | |
已知常数a>0,向量=(0,a),=(1,0),经过原点O以+λ,为方向向量的直线与经过定点A(0,a)以i-2λc为方向向量的直线相交于点P,其中λ∈R.试问:是否存在两个定点E、F,使得|PE|+|PF|为定值.若存在,求出E、F的坐标;若不存在,说明理由. |