1. 难度:中等 | |
已知全集U={1,2,3,4,5},集合A={1,3},B={3,4,5},则集合CU(A∩B)=( ) A.{3} B.{4,5} C.{3,4,5} D.{1,2,4,5} |
2. 难度:中等 | |
“x>1”是“x2>x”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 |
3. 难度:中等 | |
若b<a<0,则下列不等式中正确的是( ) A.> B.|a|>|b| C.+>2 D.a+b>ab |
4. 难度:中等 | |
如图,水平放置的三棱柱的侧棱长和底面边长均为2,且侧棱AA1⊥底面A1B1C1,主视图是边长为2的正方形,该三棱柱的左视图面积为( ) A.4 B. C. D. |
5. 难度:中等 | |
数列{an}满足a1=1,a2=3,an+1=(2n-λ)an,(n=1,2…),则a3等于( ) A.15 B.10 C.9 D.5 |
6. 难度:中等 | |
在数列{an}中,a1=1,an=an-1+n,n≥2.为计算这个数列前10项的和,现给出该问题算法的程序框图(如图所示),则图中判断框(1)处合适的语句是( ) A.i≥8 B.i≥9 C.i≥10 D.i≥11 |
7. 难度:中等 | |
设集合S={1,2,3,4,5,6,7,8,9},集合A={a1,a2,a3}是S的子集,且a1,a2,a3满足a1<a2<a3,a3-a2≤6,那么满足条件的集合A的个数为( ) A.78 B.76 C.84 D.83 |
8. 难度:中等 | |
如图,在等腰梯形ABCD中,AB∥CD,且AB=2AD,设∠DAB=θ,θ∈(0,),以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,则( ) A.随着角度θ的增大,e1增大,e1e2为定值 B.随着角度θ的增大,e1减小,e1e2为定值 C.随着角度θ的增大,e1增大,e1e2也增大 D.随着角度θ的增大,e1减小,e1e2也减小 |
9. 难度:中等 | |
某区高二年级的一次数学统考中,随机抽取200名同学的成绩,成绩全部在50分至100分之间,将成绩按下方式分成5组;第一组,成绩大于等于50分且小于60分;第二组,成绩大于等于60分且小于70分;…第五组,成绩大于等于90分且小于等于100分.据此绘制了如图所示的频率分布直方图.则这200名同学中成绩大于等于80分且小于90分的学生有 名. |
10. 难度:中等 | |
(x2+)6的展开式中常数项是 .(用数字作答) |
11. 难度:中等 | |
如图,△ABC是圆的内接三角形,PA切圆于点A,PB交圆于点D.若∠ABC=60°,PD=1,BD=8,则∠PAC= °,PA= . |
12. 难度:中等 | |
圆C:(θ为参数)的半径为 ,若圆C与直线x-y+m=0相切,则m= . |
13. 难度:中等 | |
设,,为单位向量,,的夹角为60°,则•+•的最大值为 . |
14. 难度:中等 | |
已知函数f(x)=ex+alnx的定义域是D,关于函数f(x)给出下列命题: ①对于任意a∈(0,+∞),函数f(x)是D上的减函数; ②对于任意a∈(-∞,0),函数f(x)存在最小值; ③对于任意a∈(0,+∞),使得对于任意的x∈D,都有f(x)>0成立; ④存在a∈(-∞,0),使得函数f(x)有两个零点. 其中正确命题的序号是 .(写出所有正确命题的序号) |
15. 难度:中等 | |
如图,在四边形ABCD中,AB=3,AD=BC=CD=2,A=60°. (Ⅰ)求sin∠ABD的值; (Ⅱ)求△BCD的面积. |
16. 难度:中等 | |
一个盒子中装有5张卡片,每张卡片上写有一个数字,数字分别是1、2、3、4、5,现从盒子中随机抽取卡片. (Ⅰ)若从盒子中有放回的取3次卡片,每次抽取一张,求恰有两次取到的卡片上数字为偶数的概率; (Ⅱ)若从盒子中依次抽取卡片,每次抽取一张,取出的卡片不放回,当取到一张记有偶数的卡片即停止抽取,否则继续抽取卡片,求抽取次数X的分布列和期望. |
17. 难度:中等 | |
如图,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱AA1=2. (Ⅰ)求证:C1D∥平面ABB1A1; (Ⅱ)求直线BD1与平面A1C1D所成角的正弦值; (Ⅲ)求二面角D-A1C1-A的余弦值. |
18. 难度:中等 | |
已知a≥0,函数f(x)=x2+ax.设,记曲线y=f(x)在点M(x1,f(x1))处的切线为l,l与x轴的交点是N(x2,0),O为坐标原点. (Ⅰ)证明:; (Ⅱ)若对于任意的,都有成立,求a的取值范围. |
19. 难度:中等 | |
如图,椭圆短轴的左右两个端点分别为A,B,直线l:y=kx+1与x轴、y轴分别交于两点E,F,与椭圆交于两点C,D. (Ⅰ)若,求直线l的方程; (Ⅱ)设直线AD,CB的斜率分别为k1,k2,若k1:k2=2:1,求k的值. |
20. 难度:中等 | |
在数列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R. (Ⅰ)若a1=b1,a2<b2,求数列{bn}的前n项和; (Ⅱ)证明:当时,数列{bn}中的任意三项都不能构成等比数列; (Ⅲ)设A={a1,a2,a3,…},B={b1,b2,b3,…},试问在区间[1,a]上是否存在实数b使得C=A∩B≠∅.若存在,求出b的一切可能的取值及相应的集合C;若不存在,试说明理由. |