1. 难度:中等 | |
如果函数y=ax2+bx+a的图象与x轴有两个交点,则点(a,b)在aOb平面上的区域(不包含边界)为( ) A. B. C. D. |
2. 难度:中等 | |
抛物线y=ax2的准线方程是y=2,则a的值为( ) A. B. C.8 D.-8 |
3. 难度:中等 | |
已知x∈(-,0),cosx=,则tan2x等于( ) A. B.- C. D.- |
4. 难度:中等 | |
设函数若f(x)>1,则x的取值范围是( ) A.(-1,1) B.(-1,+∞) C.(-∞,-2)∪(0,+∞) D.(-∞,-1)∪(1,+∞) |
5. 难度:中等 | |
O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,λ∈[0,+∞),则P的轨迹一定通过△ABC的( ) A.外心 B.内心 C.重心 D.垂心 |
6. 难度:中等 | |
函数,x∈(1,+∞)的反函数为( ) A.,x∈(0,+∞) B.,x∈(0,+∞) C.,x∈(-∞,0) D.,x∈(-∞,0) |
7. 难度:中等 | |
棱长为a的正方体中,连接相邻面的中心,以这些线段为棱的八面体的体积为( ) A. B. C. D. |
8. 难度:中等 | |
设a>0,f(x)=ax2+bx+c,曲线y=f(x)在点P(x,f(x))处切线的倾斜角的取值范围为[0,],则P到曲线y=f(x)对称轴距离的取值范围为( ) A.[0,] B.[0,] C.[0,||] D.[0,||] |
9. 难度:中等 | |
已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|等于( ) A.1 B. C. D. |
10. 难度:中等 | |
已知双曲线中心在原点且一个焦点为F(,0),直线y=x-1与其相交于M、N两点,MN中点的横坐标为-,则此双曲线的方程是( ) A.-=1 B.-=1 C.-=1 D.-=1 |
11. 难度:中等 | |
已知长方形的四个项点A(0,0),B(2,0),C(2,1)和D(0,1),一质点从AB的中点P沿与AB夹角为θ的方向射到BC上的点P1后,依次反射到CD.DA和AB上的点P2.P3和P4(入射角等于反射角),设P4坐标为(x4,0),若1<x4<2,则tanθ的取值范围是( ) A.(,1) B.(,) C.(,) D.(,) |
12. 难度:中等 | |
棱长都为的四面体的四个顶点在同一球面上,则此球的表面积为( ) A.3π B.4π C.3 D.6π |
13. 难度:中等 | |
在的展开式中,x3的系数是 (用数字作答) |
14. 难度:中等 | |
某公司生产三种型号的轿车,产量分别为1200辆、6000辆和2000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取 辆、 辆、 辆. |
15. 难度:中等 | |
某城市在中心广场建造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有 种.(以数字作答) |
16. 难度:中等 | |
对于四面体ABCD,给出下列四个命题 ①若AB=AC,BD=CD,则BC⊥AD; ②若AB=CD,AC=BD,则BC⊥AD; ③若AB⊥AC,BD⊥CD,则BC⊥AD; ④若AB⊥CD,BD⊥AC,则BC⊥AD. 其中真命题的序号是 .(写出所有真命题的序号) |
17. 难度:中等 | |
在三种产品,合格率分别是0.90,0.95和0.95,各抽取一件进行检验. (Ⅰ)求恰有一件不合格的概率; (Ⅱ)求至少有两件不合格的概率.(精确到0.001) |
18. 难度:中等 | |
已知函数f(x)=sin(ωx+ϕ)(ω>0,0≤ϕ≤π)是R上的偶函数,其图象关于点对称,且在区间上是单调函数,求ϕ和ω的值. |
19. 难度:中等 | |
如图,直三棱柱ABC-A1B1C1中,底面是等腰直角三角形,∠ACB=90°,侧棱AA1=2,D、E分别是CC1与A1B的中点,点E在平面ABD上的射影是△ABD的重心G. (Ⅰ)求A1B与平面ABD所成角的大小(结果用反三角函数值表示); (Ⅱ)求点A1到平面AED的距离. |
20. 难度:中等 | |
已知常数a>0,向量=(0,a),=(1,0),经过原点O以+λ,为方向向量的直线与经过定点A(0,a)以i-2λc为方向向量的直线相交于点P,其中λ∈R.试问:是否存在两个定点E、F,使得|PE|+|PF|为定值.若存在,求出E、F的坐标;若不存在,说明理由. |
21. 难度:中等 | |
已知a>0,n为正整数. (Ⅰ)设y=(x-a)n,证明y′=n(x-a)n-1; (Ⅱ)设fn(x)=xn-(x-a)n,对任意n≥a,证明fn+1′(n+1)>(n+1)fn′(n). |
22. 难度:中等 | |
设a>0,如图,已知直线l:y=ax及曲线C:y=x2,C上的点Q1的横坐标为a1(0<a1<a).从C上的点Qn(n≥1)作直线平行于x轴,交直线l于点Pn+1,再从点Pn+1作直线平行于y轴,交曲线C于点Qn+1.Qn(n=1,2,3,…)的横坐标构成数列{an}. (Ⅰ)试求an+1与an的关系,并求{an}的通项公式; (Ⅱ)当时,证明; (Ⅲ)当a=1时,证明. |